Griffith Kent J, Senyshyn Anatoliy, Grey Clare P
Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Heinz Maier-Leibnitz Zentrum, Technische Universität München , Lichtenbergstrasse 1, 85748 Garching bei München, Germany.
Inorg Chem. 2017 Apr 3;56(7):4002-4010. doi: 10.1021/acs.inorgchem.6b03154. Epub 2017 Mar 20.
The host structure and reversible lithium insertion and extraction of an intercalation compound, TiNbO, are described. Neutron diffraction, applied for the first time to TiNbO, allowed an accurate refinement of the complex block superstructure, particularly with respect to the oxygen sublattice. Analysis of the transition-metal sites revealed significant cation ordering in the mixed-metal oxide. Electrochemical analysis demonstrated highly reversible lithium intercalation with ca. 190 mA·h·g after 100 cycles (C/10 rate, 3 months). The effect of the potential window on the capacity, polarization, and reversibility was carefully examined; a minimum voltage limit of 1.1-1.2 V is critical for efficient and reversible cycling. The galvanostatic intermittent titration technique revealed three solid-solution regions, with different lithium diffusivities, in addition to the two-phase plateau that was clearly observed in the V versus Q discharge/charge profile. Lithium-ion diffusion decreases by over 3 orders of magnitude from the dilute lithium limit early in the discharge to the lithium-stuffed phase LiTiNbO. Nevertheless, prior to lithium stuffing, TiNbO possesses intrinsically rapid lithium-ion kinetics, as demonstrated by the high-rate performance in thick films of ca. 10 μm particles when interfaced with a carbon-coated aluminum foil substrate. The TiO·NbO phase diagram is examined and electrochemical results are compared to related superstructures of crystallographically sheared blocks of octahedra in the TiO·NbO homologous series including the H-NbO end member.
描述了一种嵌入化合物TiNbO的主体结构以及锂的可逆嵌入和脱出。首次将中子衍射应用于TiNbO,能够精确细化复杂的块状超结构,特别是关于氧亚晶格。对过渡金属位点的分析揭示了混合金属氧化物中显著的阳离子有序排列。电化学分析表明,在100次循环后(C/10速率,3个月)锂的嵌入具有高度可逆性,容量约为190 mA·h·g。仔细研究了电位窗口对容量、极化和可逆性的影响;1.1 - 1.2 V的最低电压限制对于高效且可逆的循环至关重要。恒电流间歇滴定技术揭示了除了在V对Q放电/充电曲线中清晰观察到的两相平台外,还有三个具有不同锂扩散率的固溶体区域。从放电早期的稀锂极限到锂填充相LiTiNbO时,锂离子扩散降低了超过3个数量级。然而,在锂填充之前,TiNbO具有固有的快速锂离子动力学,这通过与碳涂覆铝箔基板接触时约10μm颗粒厚膜的高倍率性能得到证明。研究了TiO·NbO相图,并将电化学结果与包括H - NbO端成员在内的TiO·NbO同系物系列中八面体晶体学剪切块的相关超结构进行了比较。