Suppr超能文献

芯片上的器官:进展、挑战及未来方向。

Organs-on-chips: Progress, challenges, and future directions.

作者信息

Low Lucie A, Tagle Danilo A

机构信息

National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Exp Biol Med (Maywood). 2017 Oct;242(16):1573-1578. doi: 10.1177/1535370217700523. Epub 2017 Mar 26.

Abstract

The National Institutes of Health Microphysiological Systems (MPS) program, led by the National Center for Advancing Translational Sciences, is part of a joint effort on MPS development with the Defense Advanced Research Projects Agency and with regulatory guidance from FDA, is now in its final year of funding. The program has produced many tangible outcomes in tissue chip development in terms of stem cell differentiation, microfluidic engineering, platform development, and single and multi-organ systems-and continues to help facilitate the acceptance and use of tissue chips by the wider community. As the first iteration of the program draws to a close, this Commentary will highlight some of the goals met, and lay out some of the challenges uncovered that will remain to be addressed as the field progresses. The future of the program will also be outlined. Impact statement This work is important to the field as it outlines the progress and challenges faced by the NIH Microphysiological Systems program to date, and the future of the program. This is useful information for the field to be aware of, both for current program stakeholders and future awardees and partners.

摘要

由美国国立推进转化科学中心牵头的美国国立卫生研究院微生理系统(MPS)项目,是与美国国防高级研究计划局共同开展MPS研发工作的一部分,并在美国食品药品监督管理局的监管指导下进行,目前已进入最后一年的资助阶段。该项目在组织芯片开发方面取得了许多切实成果,涵盖干细胞分化、微流控工程、平台开发以及单器官和多器官系统等领域,并持续助力推动更广泛的群体接受和使用组织芯片。随着该项目的首轮实施接近尾声,本评论将重点介绍已达成的一些目标,并阐述在该领域发展过程中发现的一些仍有待解决的挑战。同时,还将概述该项目的未来发展方向。影响声明 这项工作对该领域具有重要意义,因为它概述了美国国立卫生研究院微生理系统项目迄今为止所取得的进展和面临的挑战,以及该项目的未来发展方向。这对于该领域的相关人员,无论是当前项目的利益相关者,还是未来的受奖者和合作伙伴来说,都是有用的信息。

相似文献

1
Organs-on-chips: Progress, challenges, and future directions.
Exp Biol Med (Maywood). 2017 Oct;242(16):1573-1578. doi: 10.1177/1535370217700523. Epub 2017 Mar 26.
3
Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
Exp Biol Med (Maywood). 2017 Oct;242(16):1593-1604. doi: 10.1177/1535370217708976. Epub 2017 May 15.
4
Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective.
Exp Biol Med (Maywood). 2017 Oct;242(16):1579-1585. doi: 10.1177/1535370217715441. Epub 2017 Jun 16.
5
Tissue Chips in Space: Modeling Human Diseases in Microgravity.
Pharm Res. 2019 Dec 17;37(1):8. doi: 10.1007/s11095-019-2742-0.
6
The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology.
Toxicol Pathol. 2019 Jan;47(1):4-10. doi: 10.1177/0192623318809065. Epub 2018 Nov 8.
7
Microphysiological systems: What it takes for community adoption.
Exp Biol Med (Maywood). 2021 Jun;246(12):1435-1446. doi: 10.1177/15353702211008872. Epub 2021 Apr 25.
8
Next generation human skin constructs as advanced tools for drug development.
Exp Biol Med (Maywood). 2017 Nov;242(17):1657-1668. doi: 10.1177/1535370217712690. Epub 2017 Jun 7.
9
Increasingly microphysiological models.
Nat Biomed Eng. 2019 Jul;3(7):491-492. doi: 10.1038/s41551-019-0433-0.
10
Tackling rare diseases: Clinical trials on chips.
Exp Biol Med (Maywood). 2020 Jul;245(13):1155-1162. doi: 10.1177/1535370220924743. Epub 2020 May 12.

引用本文的文献

1
From gut to liver: organoids as platforms for next-generation toxicology assessment vehicles for xenobiotics.
Stem Cell Res Ther. 2025 Mar 26;16(1):150. doi: 10.1186/s13287-025-04264-y.
2
An overview of immunotoxicity in drug discovery and development.
Toxicol Lett. 2025 Jan;403:66-75. doi: 10.1016/j.toxlet.2024.11.007. Epub 2024 Nov 25.
3
Engineered tools to study endocrine dysfunction of pancreas.
Biophys Rev (Melville). 2024 Oct 22;5(4):041303. doi: 10.1063/5.0220396. eCollection 2024 Dec.
4
Tissue chips as headway model and incitement technology.
Synth Syst Biotechnol. 2024 Aug 30;10(1):86-101. doi: 10.1016/j.synbio.2024.08.007. eCollection 2025.
5
Targeted Cancer Therapy-on-A-Chip.
Adv Healthc Mater. 2024 Nov;13(29):e2400833. doi: 10.1002/adhm.202400833. Epub 2024 Aug 5.
6
Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma.
Adv Healthc Mater. 2024 Dec;13(30):e2401876. doi: 10.1002/adhm.202401876. Epub 2024 Aug 5.
7
Liver-on-chips for drug discovery and development.
Mater Today Bio. 2024 Jul 2;27:101143. doi: 10.1016/j.mtbio.2024.101143. eCollection 2024 Aug.
8
Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research.
Bioengineering (Basel). 2024 Jun 28;11(7):664. doi: 10.3390/bioengineering11070664.
9
Roadblocks confronting widespread dissemination and deployment of Organs on Chips.
Nat Commun. 2024 Jun 15;15(1):5118. doi: 10.1038/s41467-024-48864-3.
10
An Insight on Microfluidic Organ-on-a-Chip Models for PM-Induced Pulmonary Complications.
ACS Omega. 2024 Mar 7;9(12):13534-13555. doi: 10.1021/acsomega.3c10271. eCollection 2024 Mar 26.

本文引用的文献

4
3D microtumors in vitro supported by perfused vascular networks.
Sci Rep. 2016 Aug 23;6:31589. doi: 10.1038/srep31589.
5
Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle.
Mol Hum Reprod. 2016 Nov;22(11):756-767. doi: 10.1093/molehr/gaw041. Epub 2016 Aug 19.
6
Development of a microphysiological model of human kidney proximal tubule function.
Kidney Int. 2016 Sep;90(3):627-37. doi: 10.1016/j.kint.2016.06.011.
7
Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.
ALTEX. 2016;33(3):272-321. doi: 10.14573/altex.1603161. Epub 2016 May 15.
8
Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.
Cardiovasc Pathol. 2016 Jul-Aug;25(4):316-324. doi: 10.1016/j.carpath.2016.04.004. Epub 2016 Apr 25.
9
Human Vascular Microphysiological System for in vitro Drug Screening.
Sci Rep. 2016 Feb 18;6:21579. doi: 10.1038/srep21579.
10
Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.
Biomicrofluidics. 2015 Oct 26;9(5):054124. doi: 10.1063/1.4934713. eCollection 2015 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验