Suppr超能文献

音乐聆听过程中的连接模式:音乐家基于动作加工的证据。

Connectivity patterns during music listening: Evidence for action-based processing in musicians.

作者信息

Alluri Vinoo, Toiviainen Petri, Burunat Iballa, Kliuchko Marina, Vuust Peter, Brattico Elvira

机构信息

Department of Music, University of Jyväskylä, Jyväskylä, Finland.

Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.

出版信息

Hum Brain Mapp. 2017 Jun;38(6):2955-2970. doi: 10.1002/hbm.23565. Epub 2017 Mar 28.

Abstract

Musical expertise is visible both in the morphology and functionality of the brain. Recent research indicates that functional integration between multi-sensory, somato-motor, default-mode (DMN), and salience (SN) networks of the brain differentiates musicians from non-musicians during resting state. Here, we aimed at determining whether brain networks differentially exchange information in musicians as opposed to non-musicians during naturalistic music listening. Whole-brain graph-theory analyses were performed on participants' fMRI responses. Group-level differences revealed that musicians' primary hubs comprised cerebral and cerebellar sensorimotor regions whereas non-musicians' dominant hubs encompassed DMN-related regions. Community structure analyses of the key hubs revealed greater integration of motor and somatosensory homunculi representing the upper limbs and torso in musicians. Furthermore, musicians who started training at an earlier age exhibited greater centrality in the auditory cortex, and areas related to top-down processes, attention, emotion, somatosensory processing, and non-verbal processing of speech. We here reveal how brain networks organize themselves in a naturalistic music listening situation wherein musicians automatically engage neural networks that are action-based while non-musicians use those that are perception-based to process an incoming auditory stream. Hum Brain Mapp 38:2955-2970, 2017. © 2017 Wiley Periodicals, Inc.

摘要

音乐专长在大脑的形态和功能方面均有体现。近期研究表明,在静息状态下,大脑的多感官、躯体运动、默认模式(DMN)和突显(SN)网络之间的功能整合,使得音乐家与非音乐家有所区别。在此,我们旨在确定在自然状态下聆听音乐时,音乐家与非音乐家的大脑网络在信息交换方面是否存在差异。我们对参与者的功能磁共振成像(fMRI)反应进行了全脑图谱理论分析。组间差异显示,音乐家的主要枢纽包括大脑和小脑感觉运动区域,而非音乐家的主要枢纽则涵盖与默认模式网络相关的区域。对关键枢纽的社区结构分析表明,音乐家大脑中代表上肢和躯干的运动和躯体感觉小人像的整合程度更高。此外,更早开始训练的音乐家在听觉皮层以及与自上而下的过程、注意力、情感、躯体感觉处理和言语非言语处理相关的区域表现出更高的中心性。我们在此揭示了在自然状态下聆听音乐的情境中,大脑网络是如何自我组织的,即音乐家会自动激活基于动作的神经网络,而非音乐家则使用基于感知的神经网络来处理传入的听觉信息流。《人类大脑图谱》38:2955 - 2970,2017年。© 2017威利期刊公司。

相似文献

1
Connectivity patterns during music listening: Evidence for action-based processing in musicians.
Hum Brain Mapp. 2017 Jun;38(6):2955-2970. doi: 10.1002/hbm.23565. Epub 2017 Mar 28.
3
Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks.
Neuroimage. 2020 Aug 1;216:116513. doi: 10.1016/j.neuroimage.2019.116513. Epub 2019 Dec 31.
4
Insula-based networks in professional musicians: Evidence for increased functional connectivity during resting state fMRI.
Hum Brain Mapp. 2017 Oct;38(10):4834-4849. doi: 10.1002/hbm.23682. Epub 2017 Jul 24.
5
Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity.
Neuroimage. 2020 Feb 15;207:116384. doi: 10.1016/j.neuroimage.2019.116384. Epub 2019 Nov 21.
6
MEG Intersubject Phase Locking of Stimulus-Driven Activity during Naturalistic Speech Listening Correlates with Musical Training.
J Neurosci. 2021 Mar 24;41(12):2713-2722. doi: 10.1523/JNEUROSCI.0932-20.2020. Epub 2021 Feb 3.
7
The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study.
Brain Cogn. 2018 Feb;120:43-47. doi: 10.1016/j.bandc.2017.11.001. Epub 2017 Nov 6.
8
Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study.
Brain Res. 2015 Oct 22;1624:253-264. doi: 10.1016/j.brainres.2015.06.050. Epub 2015 Jul 20.
9
Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI.
PLoS One. 2012;7(5):e36568. doi: 10.1371/journal.pone.0036568. Epub 2012 May 7.
10
The chronnectome of musical beat.
Neuroimage. 2020 Aug 1;216:116191. doi: 10.1016/j.neuroimage.2019.116191. Epub 2019 Sep 13.

引用本文的文献

1
Altered Basal Ganglia Network Topology Associated With Auditory-Motor Synchronization.
Brain Behav. 2025 Aug;15(8):e70695. doi: 10.1002/brb3.70695.
3
Musicians' brains at rest: multilayer network analysis of magnetoencephalography data.
Cereb Cortex. 2025 Jul 1;35(7). doi: 10.1093/cercor/bhaf153.
4
Music interventions and obstructive sleep apnea: a brain connectivity analysis.
Biomed Eng Online. 2025 Apr 22;24(1):45. doi: 10.1186/s12938-025-01382-9.
5
Network connectivity differences in music listening among older adults following a music-based intervention.
Aging Brain. 2024 Oct 28;6:100128. doi: 10.1016/j.nbas.2024.100128. eCollection 2024.
7
Frontoparietal network topology as a neural marker of musical perceptual abilities.
Nat Commun. 2024 Sep 17;15(1):8160. doi: 10.1038/s41467-024-52479-z.
8
Operatic voices engage the default mode network in professional opera singers.
Sci Rep. 2024 Sep 12;14(1):21313. doi: 10.1038/s41598-024-71458-4.
9
Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians.
Brain Struct Funct. 2024 Dec;229(9):2299-2313. doi: 10.1007/s00429-024-02836-x. Epub 2024 Jul 25.

本文引用的文献

1
A window into the brain mechanisms associated with noise sensitivity.
Sci Rep. 2016 Dec 15;6:39236. doi: 10.1038/srep39236.
2
Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study.
Comput Intell Neurosci. 2016;2016:7489108. doi: 10.1155/2016/7489108. Epub 2016 Jul 21.
3
Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions.
Neuropsychologia. 2016 Aug;89:393-402. doi: 10.1016/j.neuropsychologia.2016.07.005. Epub 2016 Jul 6.
4
It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons.
Front Hum Neurosci. 2016 Jan 6;9:676. doi: 10.3389/fnhum.2015.00676. eCollection 2015.
5
Structural neuroplasticity in expert pianists depends on the age of musical training onset.
Neuroimage. 2016 Feb 1;126:106-19. doi: 10.1016/j.neuroimage.2015.11.008. Epub 2015 Nov 14.
6
The "silent" imprint of musical training.
Hum Brain Mapp. 2016 Feb;37(2):536-46. doi: 10.1002/hbm.23045. Epub 2015 Nov 5.
7
Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening.
PLoS One. 2015 Sep 30;10(9):e0138238. doi: 10.1371/journal.pone.0138238. eCollection 2015.
8
Maladaptive and adaptive emotion regulation through music: a behavioral and neuroimaging study of males and females.
Front Hum Neurosci. 2015 Aug 26;9:466. doi: 10.3389/fnhum.2015.00466. eCollection 2015.
9
The reliability of continuous brain responses during naturalistic listening to music.
Neuroimage. 2016 Jan 1;124(Pt A):224-231. doi: 10.1016/j.neuroimage.2015.09.005. Epub 2015 Sep 10.
10
The association of noise sensitivity with music listening, training, and aptitude.
Noise Health. 2015 Sep-Oct;17(78):350-7. doi: 10.4103/1463-1741.165065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验