School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin 2, Ireland.
School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin 2, Ireland.
Science. 2017 Apr 7;356(6333):69-73. doi: 10.1126/science.aal4062.
All-printed transistors consisting of interconnected networks of various types of two-dimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride (BN) separator, all formed from nanosheet networks. The BN network contains an ionic liquid within its porous interior that allows electrolytic gating in a solid-like structure. Nanosheet network channels display on:off ratios of up to 600, transconductances exceeding 5 millisiemens, and mobilities of >0.1 square centimeters per volt per second. Unusually, the on-currents scaled with network thickness and volumetric capacitance. In contrast to other devices with comparable mobility, large capacitances, while hindering switching speeds, allow these devices to carry higher currents at relatively low drive voltages.
由各种类型的二维纳米片相互连接的网络组成的全印刷晶体管是纳米科学的一个重要目标。我们使用电解门控,展示了全印刷、垂直堆叠的晶体管,其源极、漏极和栅极采用石墨烯,通道采用过渡金属二卤化物,以及采用氮化硼 (BN) 作为分离器,所有这些都是由纳米片网络形成的。BN 网络的多孔内部包含一种离子液体,允许在类似固体的结构中进行电解门控。纳米片网络通道的导通比高达 600,跨导超过 5 毫西门子,迁移率超过 0.1 平方厘米每伏特每秒。不同寻常的是,导通电流与网络厚度和体积电容成正比。与其他具有可比迁移率、大容量的器件相比,虽然大电容会阻碍开关速度,但允许这些器件在相对较低的驱动电压下承载更高的电流。