Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States.
J Chem Theory Comput. 2017 May 9;13(5):2043-2052. doi: 10.1021/acs.jctc.7b00176. Epub 2017 Apr 14.
With the aim of improving the utility of the DFT-D3 empirical dispersion correction, we herein generalize the DFT-D3 damping function by optimizing an additional parameter, an exponent, which controls the rate at which the dispersion tail is activated. This method - DFT-D3(op), shorthand for "optimized power," where power refers to the newly introduced exponent - is then parametrized for use with ten popular density functional approximations across a small set of noncovalent interactions and isomerization energies; the resulting methods are then evaluated across a large independent test set of 2475 noncovalent binding energies and isomerization energies. We find that the DFT-D3(op) tail represents a substantial improvement over existing damping functions, as it affords significant reductions in errors associated with noncovalent interaction energies and geometries. The revPBE0-D3(op) and MS2-D3(op) methods in particular stand out, and our extensive testing indicates they are competitive with other modern density functionals.
为了提高 DFT-D3 经验色散校正的实用性,我们通过优化一个额外的参数——指数,来推广 DFT-D3 阻尼函数,该指数控制色散尾部被激活的速度。这种方法——DFT-D3(op),简称为“优化幂”,其中幂指的是新引入的指数——然后针对十种流行的密度泛函近似方法进行参数化,用于一小部分非共价相互作用和异构化能;然后在一个包含 2475 个非共价结合能和异构化能的大型独立测试集上评估这些方法。我们发现,DFT-D3(op)尾部相对于现有的阻尼函数有了显著的改进,因为它大大降低了与非共价相互作用能和几何形状相关的误差。特别是 revPBE0-D3(op)和 MS2-D3(op)方法表现出色,我们的广泛测试表明它们与其他现代密度泛函具有竞争力。