Suppr超能文献

气体发酵:细胞工程的可能性及放大

Gas fermentation: cellular engineering possibilities and scale up.

作者信息

Heijstra Björn D, Leang Ching, Juminaga Alex

机构信息

LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, USA.

出版信息

Microb Cell Fact. 2017 Apr 12;16(1):60. doi: 10.1186/s12934-017-0676-y.

Abstract

Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO), hydrogen (H) and nitrogen (N). Autotrophy-the ability to fix carbon such as CO is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.

摘要

低碳燃料和化学品可以来源于生物质等可再生材料,也可以来源于工业和城市废物流。这些材料的气化能使所有碳都可用于产品生成,这明显优于将部分生物质转化为可发酵糖。气化产生一种合成气(合成气流),其中含有一氧化碳(CO)、二氧化碳(CO₂)、氢气(H₂)和氮气(N₂)。自养——固定碳(如CO₂)的能力存在于所有生命领域,但仅靠光合作用无法跟上人为CO₂的排放。一种策略是通过开发废物和合成气转化技术来减少气态大气排放。从历史上看,微生物虽作用缓慢,但导致了大气成分的重大变化。本综述重点关注厌氧气体发酵细菌,特别是产乙酸菌的现状和未来潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7a/5389167/eb1b18f082bf/12934_2017_676_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验