Suppr超能文献

基于解剖学标志的手动分割方法通过MRI评估一般人群骨骼肌脂肪含量和面积时观察者间及观察者内的变异性。

Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population.

作者信息

Kiefer Lena Sophie, Fabian Jana, Lorbeer Roberto, Machann Jürgen, Storz Corinna, Kraus Mareen Sarah, Wintermeyer Elke, Schlett Christopher, Roemer Frank, Nikolaou Konstantin, Peters Annette, Bamberg Fabian

机构信息

1 Department of Diagnostic and Interventional Radiology, University of Tuebingen , Tuebingen , Germany.

2 Department of Radiology, Ludwig-Maximilian-University Hospital , Munich , Germany.

出版信息

Br J Radiol. 2018 Sep;91(1089):20180019. doi: 10.1259/bjr.20180019. Epub 2018 May 3.

Abstract

OBJECTIVES

Changes in skeletal muscle composition, such as fat content and mass, may exert unique metabolic and musculoskeletal risks; however, the reproducibility of their assessment is unknown. We determined the variability of the assessment of skeletal muscle fat content and area by MRI in a population-based sample.

METHODS

A random sample from a prospective, community-based cohort study (KORA-FF4) was included. Skeletal muscle fat content was quantified as proton-density fat fraction (PDFF) and area as cross-sectional area (CSA) in multi-echo Dixon sequences (TR 8.90 ms, six echo times, flip angle 4°) by a standardized, anatomical landmark-based, manual skeletal muscle segmentation at level L3 vertebra by two independent observers. Reproducibility was assessed by intraclass correlation coefficients (ICC), scatter and Bland-Altman plots.

RESULTS

From 50 subjects included (mean age 56.1 ± 8.8 years, 60.0% males, mean body mass index 28.3 ± 5.2) 2'400 measurements were obtained. Interobserver agreement was excellent for all muscle compartments (PDFF: ICC0.99, CSA: ICC0.98) with only minor absolute and relative differences (-0.2 ± 0.5%, 31 ± 44.7 mm; -2.6 ± 6.4% and 2.7 ± 3.9%, respectively). Intra-observer reproducibility was similarly excellent (PDFF: ICC1.0, 0.0 ± 0.4%, 0.4%; CSA: ICC1.0, 5.5 ± 25.3 mm, 0.5%, absolute and relative differences, respectively). All agreement was independent of age, gender, body mass index, body height and visceral adipose tissue (ICC0.96-1.0). Furthermore, PDFF reproducibility was independent of CSA (ICC0.93-0.99).  Conclusions:  Quantification of skeletal muscle fat content and area by MRI using an anatomical landmark-based, manual skeletal muscle segmentation is highly reproducible. Advances in knowledge: An anatomical landmark-based, manual skeletal muscle segmentation provides high reproducibility of skeletal muscle fat content and area and may therefore serve as a robust proxy for myosteatosis and sarcopenia in large cohort studies.

摘要

目的

骨骼肌组成的变化,如脂肪含量和质量,可能会带来独特的代谢和肌肉骨骼风险;然而,其评估的可重复性尚不清楚。我们在一个基于人群的样本中确定了通过MRI评估骨骼肌脂肪含量和面积的变异性。

方法

纳入一项前瞻性、基于社区的队列研究(KORA-FF4)的随机样本。在多回波狄克逊序列(TR 8.90 ms,六个回波时间,翻转角4°)中,通过两名独立观察者基于标准化的解剖标志对L3椎体水平进行手动骨骼肌分割,将骨骼肌脂肪含量量化为质子密度脂肪分数(PDFF),面积量化为横截面积(CSA)。通过组内相关系数(ICC)、散点图和布兰德-奥特曼图评估可重复性。

结果

纳入50名受试者(平均年龄56.1±8.8岁,60.0%为男性,平均体重指数28.3±5.2),共获得2400次测量数据。所有肌肉区域观察者间的一致性都非常好(PDFF:ICC 0.99,CSA:ICC 0.98),绝对差异和相对差异都很小(分别为-0.2±0.5%,31±44.7 mm;-2.6±6.4%和2.7±3.9%)。观察者内可重复性同样很好(PDFF:ICC 1.0,0.0±0.4%,0.4%;CSA:ICC 1.0,5.5±25.3 mm,0.5%,分别为绝对差异和相对差异)。所有一致性均与年龄、性别、体重指数、身高和内脏脂肪组织无关(ICC 0.96 - 1.0)。此外,PDFF的可重复性与CSA无关(ICC 0.93 - 0.99)。结论:使用基于解剖标志的手动骨骼肌分割通过MRI量化骨骼肌脂肪含量和面积具有高度可重复性。知识进展:基于解剖标志的手动骨骼肌分割为骨骼肌脂肪含量和面积提供了高度可重复性,因此在大型队列研究中可作为肌肉脂肪变性和肌肉减少症的可靠替代指标。

相似文献

引用本文的文献

10
...(你提供的原文为空,所以译文也没有具体内容哦,请补充原文以便准确翻译。)
J Orthop Translat. 2023 Aug 19;42:57-72. doi: 10.1016/j.jot.2023.07.005. eCollection 2023 Sep.

本文引用的文献

1
Current body composition measurement techniques.当前的身体成分测量技术。
Curr Opin Endocrinol Diabetes Obes. 2017 Oct;24(5):310-314. doi: 10.1097/MED.0000000000000360.
2
Muscle as a paracrine and endocrine organ.肌肉作为一种旁分泌和内分泌器官。
Curr Opin Pharmacol. 2017 Jun;34:49-55. doi: 10.1016/j.coph.2017.05.005. Epub 2017 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验