Laboratoire de Neurosciences Cognitives, Institut National de la Santé et de la Recherche Médicale, Paris, France; Institut d'Étude de la Cognition, Departement d'Études Cognitives, École Normale Supérieure, Paris, France.
Trends Cogn Sci. 2017 Jun;21(6):425-433. doi: 10.1016/j.tics.2017.03.011. Epub 2017 May 2.
In the past decade the field of cognitive sciences has seen an exponential growth in the number of computational modeling studies. Previous work has indicated why and how candidate models of cognition should be compared by trading off their ability to predict the observed data as a function of their complexity. However, the importance of falsifying candidate models in light of the observed data has been largely underestimated, leading to important drawbacks and unjustified conclusions. We argue here that the simulation of candidate models is necessary to falsify models and therefore support the specific claims about cognitive function made by the vast majority of model-based studies. We propose practical guidelines for future research that combine model comparison and falsification.
在过去的十年中,认知科学领域的计算建模研究数量呈指数级增长。之前的工作已经表明,候选认知模型应该如何以及为什么通过权衡它们预测观测数据的能力与其复杂性来进行比较。然而,根据观测数据对候选模型进行证伪的重要性在很大程度上被低估了,导致了重要的缺陷和不合理的结论。我们在这里认为,模拟候选模型对于证伪模型是必要的,因此支持基于模型的绝大多数研究对认知功能的具体主张。我们为未来的研究提出了结合模型比较和证伪的实用指南。