Suppr超能文献

计算认知建模中伪造的重要性。

The Importance of Falsification in Computational Cognitive Modeling.

机构信息

Laboratoire de Neurosciences Cognitives, Institut National de la Santé et de la Recherche Médicale, Paris, France; Institut d'Étude de la Cognition, Departement d'Études Cognitives, École Normale Supérieure, Paris, France.

出版信息

Trends Cogn Sci. 2017 Jun;21(6):425-433. doi: 10.1016/j.tics.2017.03.011. Epub 2017 May 2.

Abstract

In the past decade the field of cognitive sciences has seen an exponential growth in the number of computational modeling studies. Previous work has indicated why and how candidate models of cognition should be compared by trading off their ability to predict the observed data as a function of their complexity. However, the importance of falsifying candidate models in light of the observed data has been largely underestimated, leading to important drawbacks and unjustified conclusions. We argue here that the simulation of candidate models is necessary to falsify models and therefore support the specific claims about cognitive function made by the vast majority of model-based studies. We propose practical guidelines for future research that combine model comparison and falsification.

摘要

在过去的十年中,认知科学领域的计算建模研究数量呈指数级增长。之前的工作已经表明,候选认知模型应该如何以及为什么通过权衡它们预测观测数据的能力与其复杂性来进行比较。然而,根据观测数据对候选模型进行证伪的重要性在很大程度上被低估了,导致了重要的缺陷和不合理的结论。我们在这里认为,模拟候选模型对于证伪模型是必要的,因此支持基于模型的绝大多数研究对认知功能的具体主张。我们为未来的研究提出了结合模型比较和证伪的实用指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验