Suppr超能文献

基于特征的奖励学习塑造人类社会学习策略。

Feature-based reward learning shapes human social learning strategies.

作者信息

Schultner David, Molleman Lucas, Lindström Björn

机构信息

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.

出版信息

Nat Hum Behav. 2025 Jul 23. doi: 10.1038/s41562-025-02269-4.

Abstract

Human adaptation depends on individuals strategically choosing whom to learn from. A mosaic of social learning strategies-such as copying majorities or successful others-has been identified. Influential theories conceive of these strategies as fixed heuristics, independent of experience. However, such accounts cannot explain the flexibility and individual variability prevalent in social learning. Here we advance a domain-general reward learning framework that provides a unifying mechanistic account of pivotal social learning strategies. We first formalize how individuals learn to associate social features (for example, others' behaviour or success) with reward. Across six experiments (n = 1,941), we show that people flexibly adjust their social learning in response to experienced rewards. Agent-based simulations further demonstrate how this learning process gives rise to key social learning strategies across a range of environments. Our findings suggest that people learn how to learn from others, enabling adaptive knowledge to spread dynamically throughout societies.

摘要

人类的适应性取决于个体策略性地选择向谁学习。人们已经识别出一系列社会学习策略的组合,比如模仿多数人或成功人士。有影响力的理论将这些策略视为固定的启发式方法,与经验无关。然而,这样的解释无法说明社会学习中普遍存在的灵活性和个体差异。在此,我们提出一个通用的奖励学习框架,它为关键的社会学习策略提供了一个统一的机制性解释。我们首先形式化了个体如何学会将社会特征(例如,他人的行为或成功)与奖励联系起来。在六个实验(n = 1,941)中,我们表明人们会根据获得的奖励灵活调整他们的社会学习方式。基于主体的模拟进一步展示了这个学习过程如何在一系列环境中产生关键的社会学习策略。我们的研究结果表明,人们学会了如何向他人学习,从而使适应性知识能够在整个社会中动态传播。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验