Suppr超能文献

经典模型计算神经元膜电位和细胞外电位准确性的评估

An Evaluation of the Accuracy of Classical Models for Computing the Membrane Potential and Extracellular Potential for Neurons.

作者信息

Tveito Aslak, Jæger Karoline H, Lines Glenn T, Paszkowski Łukasz, Sundnes Joakim, Edwards Andrew G, Māki-Marttunen Tuomo, Halnes Geir, Einevoll Gaute T

机构信息

Simula Research Laboratory, Center for Biomedical ComputingOslo, Norway.

Department of Informatics, University of OsloOslo, Norway.

出版信息

Front Comput Neurosci. 2017 Apr 24;11:27. doi: 10.3389/fncom.2017.00027. eCollection 2017.

Abstract

Two mathematical models are part of the foundation of Computational neurophysiology; (a) the Cable equation is used to compute the membrane potential of neurons, and, (b) volume-conductor theory describes the extracellular potential around neurons. In the standard procedure for computing extracellular potentials, the transmembrane currents are computed by means of (a) and the extracellular potentials are computed using an explicit sum over analytical point-current source solutions as prescribed by volume conductor theory. Both models are extremely useful as they allow huge simplifications of the computational efforts involved in computing extracellular potentials. However, there are more accurate, though computationally very expensive, models available where the potentials inside and outside the neurons are computed simultaneously in a self-consistent scheme. In the present work we explore the accuracy of the classical models (a) and (b) by comparing them to these more accurate schemes. The main assumption of (a) is that the ephaptic current can be ignored in the derivation of the Cable equation. We find, however, for our examples with stylized neurons, that the ephaptic current is comparable in magnitude to other currents involved in the computations, suggesting that it may be significant-at least in parts of the simulation. The magnitude of the error introduced in the membrane potential is several millivolts, and this error also translates into errors in the predicted extracellular potentials. While the error becomes negligible if we assume the extracellular conductivity to be very large, this assumption is, unfortunately, not easy to justify for all situations of interest.

摘要

两种数学模型是计算神经生理学基础的一部分;(a)电缆方程用于计算神经元的膜电位,并且,(b)容积导体理论描述神经元周围的细胞外电位。在计算细胞外电位的标准程序中,跨膜电流通过(a)来计算,而细胞外电位则使用容积导体理论规定的解析点电流源解的显式求和来计算。这两种模型都极其有用,因为它们极大地简化了计算细胞外电位所涉及的计算量。然而,有一些更精确但计算成本非常高的模型,其中神经元内部和外部的电位在自洽方案中同时计算。在本工作中,我们通过将经典模型(a)和(b)与这些更精确的方案进行比较来探究其准确性。(a)的主要假设是在电缆方程的推导中电突触电流可以忽略不计。然而,对于我们具有理想化神经元的示例,我们发现电突触电流在大小上与计算中涉及的其他电流相当,这表明它可能是显著的——至少在部分模拟中是这样。膜电位中引入的误差大小为几毫伏,并且这种误差也会转化为预测的细胞外电位中的误差。虽然如果我们假设细胞外电导率非常大,误差会变得可以忽略不计,但不幸的是,对于所有感兴趣的情况,这个假设并不容易成立。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bea/5401906/4f74739cf3d5/fncom-11-00027-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验