Suppr超能文献

具有时间模式的临床结果预后及单类特征选择的经验

Prognosis of Clinical Outcomes with Temporal Patterns and Experiences with One Class Feature Selection.

作者信息

Moskovitch Robert, Choi Hyunmi, Hripcsak George, Tatonetti Nicholas

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):555-563. doi: 10.1109/TCBB.2016.2591539. Epub 2016 Jul 14.

Abstract

Accurate prognosis of outcome events, such as clinical procedures or disease diagnosis, is central in medicine. The emergence of longitudinal clinical data, like the Electronic Health Records (EHR), represents an opportunity to develop automated methods for predicting patient outcomes. However, these data are highly dimensional and very sparse, complicating the application of predictive modeling techniques. Further, their temporal nature is not fully exploited by current methods, and temporal abstraction was recently used which results in symbolic time intervals representation. We present Maitreya, a framework for the prediction of outcome events that leverages these symbolic time intervals. Using Maitreya, learn predictive models based on the temporal patterns in the clinical records that are prognostic markers and use these markers to train predictive models for eight clinical procedures. In order to decrease the number of patterns that are used as features, we propose the use of three one class feature selection methods. We evaluate the performance of Maitreya under several parameter settings, including the one-class feature selection, and compare our results to that of atemporal approaches. In general, we found that the use of temporal patterns outperformed the atemporal methods, when representing the number of pattern occurrences.

摘要

准确预测诸如临床手术或疾病诊断等结果事件在医学中至关重要。纵向临床数据的出现,如电子健康记录(EHR),为开发预测患者结果的自动化方法提供了契机。然而,这些数据维度很高且非常稀疏,使得预测建模技术的应用变得复杂。此外,当前方法并未充分利用其时间特性,最近采用了时间抽象方法,从而产生了符号时间间隔表示。我们提出了弥勒框架(Maitreya),这是一个利用这些符号时间间隔来预测结果事件的框架。使用弥勒框架,基于临床记录中的时间模式学习预测模型,这些时间模式是预后标志物,并使用这些标志物为八种临床手术训练预测模型。为了减少用作特征的模式数量,我们建议使用三种单类特征选择方法。我们在包括单类特征选择在内的几种参数设置下评估弥勒框架的性能,并将我们的结果与非时间方法的结果进行比较。总体而言,我们发现当表示模式出现次数时,使用时间模式的方法优于非时间方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/5486920/446a90dfcb0d/nihms869282f1.jpg

相似文献

1
Prognosis of Clinical Outcomes with Temporal Patterns and Experiences with One Class Feature Selection.具有时间模式的临床结果预后及单类特征选择的经验
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):555-563. doi: 10.1109/TCBB.2016.2591539. Epub 2016 Jul 14.
4
Modeling Healthcare Quality via Compact Representations of Electronic Health Records.通过电子健康记录的紧凑表示来建模医疗质量。
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):545-554. doi: 10.1109/TCBB.2016.2591523. Epub 2016 Jul 14.
7
High-throughput phenotyping with temporal sequences.高通量表型分析与时间序列。
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.

引用本文的文献

本文引用的文献

4
Parameterizing time in electronic health record studies.在电子健康记录研究中对时间进行参数化。
J Am Med Inform Assoc. 2015 Jul;22(4):794-804. doi: 10.1093/jamia/ocu051. Epub 2015 Feb 26.
7
Next-generation phenotyping of electronic health records.电子健康记录的下一代表型分析。
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.
9
Exploiting time in electronic health record correlations.利用电子健康记录中的关联信息。
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i109-15. doi: 10.1136/amiajnl-2011-000463. Epub 2011 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验