Moskovitch Robert, Choi Hyunmi, Hripcsak George, Tatonetti Nicholas
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):555-563. doi: 10.1109/TCBB.2016.2591539. Epub 2016 Jul 14.
Accurate prognosis of outcome events, such as clinical procedures or disease diagnosis, is central in medicine. The emergence of longitudinal clinical data, like the Electronic Health Records (EHR), represents an opportunity to develop automated methods for predicting patient outcomes. However, these data are highly dimensional and very sparse, complicating the application of predictive modeling techniques. Further, their temporal nature is not fully exploited by current methods, and temporal abstraction was recently used which results in symbolic time intervals representation. We present Maitreya, a framework for the prediction of outcome events that leverages these symbolic time intervals. Using Maitreya, learn predictive models based on the temporal patterns in the clinical records that are prognostic markers and use these markers to train predictive models for eight clinical procedures. In order to decrease the number of patterns that are used as features, we propose the use of three one class feature selection methods. We evaluate the performance of Maitreya under several parameter settings, including the one-class feature selection, and compare our results to that of atemporal approaches. In general, we found that the use of temporal patterns outperformed the atemporal methods, when representing the number of pattern occurrences.
准确预测诸如临床手术或疾病诊断等结果事件在医学中至关重要。纵向临床数据的出现,如电子健康记录(EHR),为开发预测患者结果的自动化方法提供了契机。然而,这些数据维度很高且非常稀疏,使得预测建模技术的应用变得复杂。此外,当前方法并未充分利用其时间特性,最近采用了时间抽象方法,从而产生了符号时间间隔表示。我们提出了弥勒框架(Maitreya),这是一个利用这些符号时间间隔来预测结果事件的框架。使用弥勒框架,基于临床记录中的时间模式学习预测模型,这些时间模式是预后标志物,并使用这些标志物为八种临床手术训练预测模型。为了减少用作特征的模式数量,我们建议使用三种单类特征选择方法。我们在包括单类特征选择在内的几种参数设置下评估弥勒框架的性能,并将我们的结果与非时间方法的结果进行比较。总体而言,我们发现当表示模式出现次数时,使用时间模式的方法优于非时间方法。