Suppr超能文献

具有时间模式的临床结果预后及单类特征选择的经验

Prognosis of Clinical Outcomes with Temporal Patterns and Experiences with One Class Feature Selection.

作者信息

Moskovitch Robert, Choi Hyunmi, Hripcsak George, Tatonetti Nicholas

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):555-563. doi: 10.1109/TCBB.2016.2591539. Epub 2016 Jul 14.

Abstract

Accurate prognosis of outcome events, such as clinical procedures or disease diagnosis, is central in medicine. The emergence of longitudinal clinical data, like the Electronic Health Records (EHR), represents an opportunity to develop automated methods for predicting patient outcomes. However, these data are highly dimensional and very sparse, complicating the application of predictive modeling techniques. Further, their temporal nature is not fully exploited by current methods, and temporal abstraction was recently used which results in symbolic time intervals representation. We present Maitreya, a framework for the prediction of outcome events that leverages these symbolic time intervals. Using Maitreya, learn predictive models based on the temporal patterns in the clinical records that are prognostic markers and use these markers to train predictive models for eight clinical procedures. In order to decrease the number of patterns that are used as features, we propose the use of three one class feature selection methods. We evaluate the performance of Maitreya under several parameter settings, including the one-class feature selection, and compare our results to that of atemporal approaches. In general, we found that the use of temporal patterns outperformed the atemporal methods, when representing the number of pattern occurrences.

摘要

准确预测诸如临床手术或疾病诊断等结果事件在医学中至关重要。纵向临床数据的出现,如电子健康记录(EHR),为开发预测患者结果的自动化方法提供了契机。然而,这些数据维度很高且非常稀疏,使得预测建模技术的应用变得复杂。此外,当前方法并未充分利用其时间特性,最近采用了时间抽象方法,从而产生了符号时间间隔表示。我们提出了弥勒框架(Maitreya),这是一个利用这些符号时间间隔来预测结果事件的框架。使用弥勒框架,基于临床记录中的时间模式学习预测模型,这些时间模式是预后标志物,并使用这些标志物为八种临床手术训练预测模型。为了减少用作特征的模式数量,我们建议使用三种单类特征选择方法。我们在包括单类特征选择在内的几种参数设置下评估弥勒框架的性能,并将我们的结果与非时间方法的结果进行比较。总体而言,我们发现当表示模式出现次数时,使用时间模式的方法优于非时间方法。

相似文献

1
Prognosis of Clinical Outcomes with Temporal Patterns and Experiences with One Class Feature Selection.
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):555-563. doi: 10.1109/TCBB.2016.2591539. Epub 2016 Jul 14.
2
Efficient Mining Template of Predictive Temporal Clinical Event Patterns From Patient Electronic Medical Records.
IEEE J Biomed Health Inform. 2019 Sep;23(5):2138-2147. doi: 10.1109/JBHI.2018.2877255. Epub 2018 Oct 22.
3
Procedure prediction from symbolic Electronic Health Records via time intervals analytics.
J Biomed Inform. 2017 Nov;75:70-82. doi: 10.1016/j.jbi.2017.07.018. Epub 2017 Aug 17.
4
Modeling Healthcare Quality via Compact Representations of Electronic Health Records.
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):545-554. doi: 10.1109/TCBB.2016.2591523. Epub 2016 Jul 14.
5
Medical data mining in sentiment analysis based on optimized swarm search feature selection.
Australas Phys Eng Sci Med. 2018 Dec;41(4):1087-1100. doi: 10.1007/s13246-018-0674-3. Epub 2018 Sep 11.
7
High-throughput phenotyping with temporal sequences.
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.
9
Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological Sensor Data.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1557-66. doi: 10.1109/JBHI.2015.2438645.
10
Incorporating repeating temporal association rules in Naïve Bayes classifiers for coronary heart disease diagnosis.
J Biomed Inform. 2018 May;81:74-82. doi: 10.1016/j.jbi.2018.03.002. Epub 2018 Mar 16.

引用本文的文献

1
Transitive Sequencing Medical Records for Mining Predictive and Interpretable Temporal Representations.
Patterns (N Y). 2020 Jul 10;1(4):100051. doi: 10.1016/j.patter.2020.100051. Epub 2020 Jun 18.
2
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
Diagn Progn Res. 2020 Jul 9;4:9. doi: 10.1186/s41512-020-00078-z. eCollection 2020.
3
Feature engineering with clinical expert knowledge: A case study assessment of machine learning model complexity and performance.
PLoS One. 2020 Apr 23;15(4):e0231300. doi: 10.1371/journal.pone.0231300. eCollection 2020.
5
Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets.
Int J Med Inform. 2017 Jun;102:71-79. doi: 10.1016/j.ijmedinf.2017.03.006. Epub 2017 Mar 18.
6
Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.
Artif Intell Med. 2017 Sep;81:12-32. doi: 10.1016/j.artmed.2017.03.003. Epub 2017 Apr 27.
7
Machine learning approaches to personalize early prediction of asthma exacerbations.
Ann N Y Acad Sci. 2017 Jan;1387(1):153-165. doi: 10.1111/nyas.13218. Epub 2016 Sep 14.

本文引用的文献

1
2
Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms.
Wiley Interdiscip Rev Syst Biol Med. 2016 Mar-Apr;8(2):104-22. doi: 10.1002/wsbm.1323. Epub 2015 Nov 12.
4
Parameterizing time in electronic health record studies.
J Am Med Inform Assoc. 2015 Jul;22(4):794-804. doi: 10.1093/jamia/ocu051. Epub 2015 Feb 26.
5
PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.
J Biomed Inform. 2014 Apr;48:160-70. doi: 10.1016/j.jbi.2013.12.012. Epub 2013 Dec 25.
6
Predicting changes in hypertension control using electronic health records from a chronic disease management program.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):337-44. doi: 10.1136/amiajnl-2013-002033. Epub 2013 Sep 17.
7
Next-generation phenotyping of electronic health records.
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.
8
Mining electronic health records: towards better research applications and clinical care.
Nat Rev Genet. 2012 May 2;13(6):395-405. doi: 10.1038/nrg3208.
9
Exploiting time in electronic health record correlations.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i109-15. doi: 10.1136/amiajnl-2011-000463. Epub 2011 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验