Inglese Paolo, McKenzie James S, Mroz Anna, Kinross James, Veselkov Kirill, Holmes Elaine, Takats Zoltan, Nicholson Jeremy K, Glen Robert C
Department of Surgery and Cancer - Division of Computational and Systems Medicine , Imperial College London , London , UK . Email:
Centre for Molecular Informatics , Department of Chemistry , University of Cambridge , Cambridge , UK.
Chem Sci. 2017 May 1;8(5):3500-3511. doi: 10.1039/c6sc03738k. Epub 2017 Feb 21.
Visual inspection of tumour tissues does not reveal the complex metabolic changes that differentiate cancer and its sub-types from healthy tissues. Mass spectrometry imaging, which quantifies the underlying chemistry, represents a powerful tool for the molecular exploration of tumour tissues. A 3-dimensional topological description of the chemical properties of the tumour permits the formulation of hypotheses about the biological composition and interactions and the possible causes of its heterogeneous structure. The large amount of information contained in such datasets requires powerful tools for its analysis, visualisation and interpretation. Linear methods for unsupervised dimensionality reduction, such as PCA, are inadequate to capture the complex non-linear relationships present in these data. For this reason, a deep unsupervised neural network based technique, parametric t-SNE, is adopted to map a 3D-DESI-MS dataset from a human colorectal adenocarcinoma biopsy onto a 2-dimensional manifold. This technique allows the identification of clusters not visible with linear methods. The unsupervised clustering of the tumour tissue results in the identification of sub-regions characterised by the abundance of identified metabolites, making possible the formulation of hypotheses to account for their significance and the underlying biological heterogeneity in the tumour.
对肿瘤组织进行肉眼检查无法揭示将癌症及其亚型与健康组织区分开来的复杂代谢变化。质谱成像可对潜在化学物质进行定量分析,是肿瘤组织分子探索的有力工具。对肿瘤化学性质进行三维拓扑描述有助于形成关于其生物学组成、相互作用以及异质结构可能成因的假设。此类数据集中包含的大量信息需要强大的工具进行分析、可视化和解读。诸如主成分分析(PCA)等用于无监督降维的线性方法不足以捕捉这些数据中存在的复杂非线性关系。因此,采用了一种基于深度无监督神经网络的技术——参数化t-SNE,将来自人类结肠直肠腺癌活检的三维解吸电喷雾电离质谱(3D-DESI-MS)数据集映射到二维流形上。该技术能够识别线性方法无法发现的聚类。对肿瘤组织进行无监督聚类可识别出以已鉴定代谢物丰度为特征的子区域,从而有可能形成假设来解释它们的重要性以及肿瘤潜在的生物学异质性。