Suppr超能文献

基于补丁的临床脑图像离散配准

Patch-Based Discrete Registration of Clinical Brain Images.

作者信息

Dalca Adrian V, Bobu Andreea, Rost Natalia S, Golland Polina

机构信息

Computer Science and Artificial Intelligence Lab, EECS, MIT, Cambridge, USA.

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.

出版信息

Patch Based Tech Med Imaging (2016). 2016 Oct;9993:60-67. doi: 10.1007/978-3-319-47118-1_8. Epub 2016 Sep 22.

Abstract

We introduce a method for registration of brain images acquired in clinical settings. The algorithm relies on three-dimensional patches in a discrete registration framework to estimate correspondences. Clinical images present significant challenges for computational analysis. Fast acquisition often results in images with sparse slices, severe artifacts, and variable fields of view. Yet, large clinical datasets hold a wealth of clinically relevant information. Despite significant progress in image registration, most algorithms make strong assumptions about the continuity of image data, failing when presented with clinical images that violate these assumptions. In this paper, we demonstrate a non-rigid registration method for aligning such images. The method explicitly models the sparsely available image information to achieve robust registration. We demonstrate the algorithm on clinical images of stroke patients. The proposed method outperforms state of the art registration algorithms and avoids catastrophic failures often caused by these images. We provide a freely available open source implementation of the algorithm.

摘要

我们介绍一种用于临床环境中获取的脑图像配准的方法。该算法在离散配准框架中依赖三维补丁来估计对应关系。临床图像给计算分析带来了重大挑战。快速采集常常导致图像切片稀疏、存在严重伪影以及视野可变。然而,大型临床数据集包含丰富的临床相关信息。尽管图像配准取得了显著进展,但大多数算法对图像数据的连续性做出了很强的假设,当面对违反这些假设的临床图像时就会失效。在本文中,我们展示了一种用于对齐此类图像的非刚性配准方法。该方法明确地对稀疏可用的图像信息进行建模,以实现稳健的配准。我们在中风患者的临床图像上演示了该算法。所提出的方法优于现有最先进的配准算法,并且避免了这些图像经常导致的灾难性失败。我们提供了该算法的免费开源实现。

相似文献

1
Patch-Based Discrete Registration of Clinical Brain Images.基于补丁的临床脑图像离散配准
Patch Based Tech Med Imaging (2016). 2016 Oct;9993:60-67. doi: 10.1007/978-3-319-47118-1_8. Epub 2016 Sep 22.
3
Inverse consistent non-rigid image registration based on robust point set matching.基于鲁棒点集匹配的反向一致非刚性图像配准
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11.
8
A novel non-rigid registration algorithm for zebrafish larval images.一种用于斑马鱼幼体图像的新型非刚性配准算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:321-324. doi: 10.1109/EMBC.2017.8036827.
9
3D image registration using a fast noniterative algorithm.
Magn Reson Imaging. 2000 Nov;18(9):1143-50. doi: 10.1016/s0730-725x(00)00209-5.

引用本文的文献

7
Multi-contrast computed tomography healthy kidney atlas.多对比度计算机断层扫描健康肾图谱。
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.
8
Clinically Deployed Computational Assessment of Multiple Sclerosis Lesions.多发性硬化症病变的临床应用计算评估
Front Med (Lausanne). 2022 Mar 17;9:797586. doi: 10.3389/fmed.2022.797586. eCollection 2022.
10
Bayesian Fully Convolutional Networks for Brain Image Registration.贝叶斯全卷积网络在脑图像配准中的应用。
J Healthc Eng. 2021 Jul 26;2021:5528160. doi: 10.1155/2021/5528160. eCollection 2021.

本文引用的文献

2
Feature-based alignment of volumetric multi-modal images.基于特征的容积多模态图像对齐
Inf Process Med Imaging. 2013;23:25-36. doi: 10.1007/978-3-642-38868-2_3.
3
MRF-based deformable registration and ventilation estimation of lung CT.基于 MRF 的肺部 CT 形变配准与通气估计。
IEEE Trans Med Imaging. 2013 Jul;32(7):1239-48. doi: 10.1109/TMI.2013.2246577. Epub 2013 Feb 26.
5
White matter hyperintensity burden and susceptibility to cerebral ischemia.脑白质高信号负荷与脑缺血易感性。
Stroke. 2010 Dec;41(12):2807-11. doi: 10.1161/STROKEAHA.110.595355. Epub 2010 Oct 14.
8
Non-local MRI upsampling.非局部 MRI 上采样。
Med Image Anal. 2010 Dec;14(6):784-92. doi: 10.1016/j.media.2010.05.010. Epub 2010 Jun 4.
10
Consistent landmark and intensity-based image registration.基于一致地标和强度的图像配准。
IEEE Trans Med Imaging. 2002 May;21(5):450-61. doi: 10.1109/TMI.2002.1009381.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验