Tomasi Dardo G, Shokri-Kojori Ehsan, Wiers Corinde E, Kim Sunny W, Demiral Şukru B, Cabrera Elizabeth A, Lindgren Elsa, Miller Gregg, Wang Gene-Jack, Volkow Nora D
1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
2 National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA.
J Cereb Blood Flow Metab. 2017 Dec;37(12):3659-3670. doi: 10.1177/0271678X17708692. Epub 2017 May 23.
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
静息态功能磁共振成像(rfMRI)网络是否与能量需求的潜在同步性相关仍不清楚,能量需求通过动态2-脱氧-2-[F]氟葡萄糖(FDG)正电子发射断层扫描(PET)来测量。我们测量了53名健康参与者静息时的绝对葡萄糖代谢、时间代谢连通性(t-MC)和rfMRI模式。通过组独立成分分析(gICA)出现了22个rfMRI网络。相比之下,使用gICA或种子体素相关性从FDG-PET时间序列中仅出现了两个反相关的t-MC;一个包括额叶、顶叶和颞叶皮质,另一个包括小脑和内侧颞叶区域。小脑、丘脑、苍白球和距状皮质是最强的t-MC中心,而楔前叶和视觉皮质是最强的rfMRI中心。t-MC的强度随葡萄糖代谢率线性增加,这表明t-MC测量与脑组织的能量需求密切相关,并且可以反映葡萄糖代谢的区域差异、代谢网络需求的平衡以及/或者FDG的不同时变递送。作为时间函数计算的代谢和功能连通性模式之间的不匹配可能反映了用PET-FDG测量的葡萄糖代谢的时间特征与用rfMRI测量的脑激活之间的差异。