Suppr超能文献

来自[具体来源未给出]的两种甘油-3-磷酸脱氢酶在脂质代谢中具有不同作用。

Two Glycerol-3-Phosphate Dehydrogenases from Have Distinct Roles in Lipid Metabolism.

作者信息

Driver Thomas, Trivedi Drupad K, McIntosh Owen A, Dean Andrew P, Goodacre Royston, Pittman Jon K

机构信息

Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.

Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom.

出版信息

Plant Physiol. 2017 Aug;174(4):2083-2097. doi: 10.1104/pp.17.00491. Epub 2017 Jun 6.

Abstract

The metabolism of glycerol-3-phosphate (G3P) is important for environmental stress responses by eukaryotic microalgae. G3P is an essential precursor for glycerolipid synthesis and the accumulation of triacylglycerol (TAG) in response to nutrient starvation. G3P dehydrogenase (GPDH) mediates G3P synthesis, but the roles of specific GPDH isoforms are currently poorly understood. Of the five GPDH enzymes in the model alga , and were shown to be induced by nutrient starvation and/or salt stress. Heterologous expression of GPD2, a putative chloroplastic GPDH, and GPD3, a putative cytosolic GPDH, in a yeast Δ mutant demonstrated the functionality of both enzymes. knockdown mutants for and showed no difference in growth but displayed significant reduction in TAG concentration compared with the wild type in response to phosphorus or nitrogen starvation. Overexpression of and in gave distinct phenotypes. overexpression lines showed only subtle metabolic phenotypes and no significant alteration in growth. In contrast, overexpression lines displayed significantly inhibited growth and chlorophyll concentration, reduced glycerol concentration, and changes to lipid composition compared with the wild type, including increased abundance of phosphatidic acids but reduced abundance of diglycerides, triglycerides, and phosphatidylglycerol lipids. This may indicate a block in the downstream glycerolipid metabolism pathway in overexpression lines. Thus, lipid engineering by GPDH modification may depend on the activities of other downstream enzyme steps. These results also suggest that GPD2 and GPD3 GPDH isoforms are important for nutrient starvation-induced TAG accumulation but have distinct metabolic functions.

摘要

3-磷酸甘油(G3P)的代谢对于真核微藻的环境应激反应至关重要。G3P是甘油脂质合成以及响应营养饥饿时三酰甘油(TAG)积累的必需前体。G3P脱氢酶(GPDH)介导G3P的合成,但目前对特定GPDH同工型的作用了解甚少。在模式藻类中的五种GPDH酶中, 和 已被证明可由营养饥饿和/或盐胁迫诱导。在酵母Δ突变体中异源表达推定的叶绿体GPDH即GPD2和推定的胞质GPDH即GPD3,证明了这两种酶的功能。 和 的敲除突变体在生长方面没有差异,但与野生型相比,在响应磷或氮饥饿时,TAG浓度显著降低。在 中过表达 和 产生了不同的表型。 过表达系仅表现出细微的代谢表型,生长没有显著变化。相比之下, 过表达系与野生型相比,生长和叶绿素浓度受到显著抑制,甘油浓度降低,脂质组成发生变化,包括磷脂酸丰度增加,但甘油二酯、甘油三酯和磷脂酰甘油脂质丰度降低。这可能表明 过表达系中甘油脂质代谢下游途径存在阻断。因此,通过GPDH修饰进行脂质工程可能取决于其他下游酶步骤的活性。这些结果还表明,GPD2和GPD3 GPDH同工型对于营养饥饿诱导TAG积累很重要,但具有不同的代谢功能。

相似文献

1
Two Glycerol-3-Phosphate Dehydrogenases from Have Distinct Roles in Lipid Metabolism.
Plant Physiol. 2017 Aug;174(4):2083-2097. doi: 10.1104/pp.17.00491. Epub 2017 Jun 6.
4
Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
Yeast. 2000 Mar 30;16(5):463-74. doi: 10.1002/(SICI)1097-0061(20000330)16:5<463::AID-YEA535>3.0.CO;2-3.
6
Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2011 Sep;77(17):5857-67. doi: 10.1128/AEM.05338-11. Epub 2011 Jul 1.
7
Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis.
Plant Mol Biol. 2009 Sep;71(1-2):193-205. doi: 10.1007/s11103-009-9517-7. Epub 2009 Jun 24.
9
Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx.
J Virol. 2023 May 31;97(5):e0058023. doi: 10.1128/jvi.00580-23. Epub 2023 May 11.

引用本文的文献

1
Effects of DpWRI1-like gene overexpression in transgenic Dunaliella parva.
Antonie Van Leeuwenhoek. 2025 May 30;118(7):84. doi: 10.1007/s10482-025-02095-8.
2
Effects of the gene of the SCF complex on lipid metabolism and response to abiotic stress in .
Front Plant Sci. 2025 Mar 17;16:1527439. doi: 10.3389/fpls.2025.1527439. eCollection 2025.
5
Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives.
Mar Drugs. 2024 May 9;22(5):216. doi: 10.3390/md22050216.
8
The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae .
Int J Mol Sci. 2021 Apr 29;22(9):4695. doi: 10.3390/ijms22094695.
9
Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO in Chlamydomonas Reinhardtii.
Mar Biotechnol (NY). 2021 Apr;23(2):255-275. doi: 10.1007/s10126-021-10021-y. Epub 2021 Mar 10.

本文引用的文献

2
Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals.
Trends Biotechnol. 2017 Feb;35(2):95-99. doi: 10.1016/j.tibtech.2016.06.001. Epub 2016 Jul 4.
3
Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae.
Nat Plants. 2015 Jul 27;1:15107. doi: 10.1038/nplants.2015.107.
10
High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation.
Metabolomics. 2016;12:9. doi: 10.1007/s11306-015-0878-4. Epub 2015 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验