Department of Environmental Biotechnology, UFZ-Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany.
Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany.
Nat Commun. 2017 Jun 7;8:15472. doi: 10.1038/ncomms15472.
Fungal-bacterial interactions are highly diverse and contribute to many ecosystem processes. Their emergence under common environmental stress scenarios however, remains elusive. Here we use a synthetic microbial ecosystem based on the germination of Bacillus subtilis spores to examine whether fungal and fungal-like (oomycete) mycelia reduce bacterial water and nutrient stress in an otherwise dry and nutrient-poor microhabitat. We find that the presence of mycelia enables the germination and subsequent growth of bacterial spores near the hyphae. Using a combination of time of flight- and nanoscale secondary ion mass spectrometry (ToF- and nanoSIMS) coupled with stable isotope labelling, we link spore germination to hyphal transfer of water, carbon and nitrogen. Our study provides direct experimental evidence for the stimulation of bacterial activity by mycelial supply of scarce resources in dry and nutrient-free environments. We propose that mycelia may stimulate bacterial activity and thus contribute to sustaining ecosystem functioning in stressed habitats.
真菌-细菌相互作用具有高度多样性,并有助于许多生态系统过程。然而,在常见的环境胁迫情景下,它们的出现仍然难以捉摸。在这里,我们使用基于枯草芽孢杆菌孢子萌发的合成微生物生态系统,来研究真菌和真菌样(卵菌)菌丝是否会减少在干燥和贫营养微生境中细菌的水分和养分胁迫。我们发现,菌丝的存在使细菌孢子能够在靠近菌丝的地方萌发并随后生长。通过使用飞行时间-和纳米二次离子质谱(ToF-和 nanoSIMS)结合稳定同位素标记的方法,我们将孢子萌发与菌丝对水、碳和氮的转移联系起来。我们的研究为在干燥和无营养环境中,菌丝通过提供稀缺资源来刺激细菌活性提供了直接的实验证据。我们提出,菌丝可能会刺激细菌的活性,从而有助于维持受胁迫生境中的生态系统功能。