Suppr超能文献

科普韦尔:一个用于预测灾后社区功能与恢复力的概念框架和系统动力学模型。

COPEWELL: A Conceptual Framework and System Dynamics Model for Predicting Community Functioning and Resilience After Disasters.

作者信息

Links Jonathan M, Schwartz Brian S, Lin Sen, Kanarek Norma, Mitrani-Reiser Judith, Sell Tara Kirk, Watson Crystal R, Ward Doug, Slemp Cathy, Burhans Robert, Gill Kimberly, Igusa Tak, Zhao Xilei, Aguirre Benigno, Trainor Joseph, Nigg Joanne, Inglesby Thomas, Carbone Eric, Kendra James M

机构信息

1Department of Environmental Health and Engineering,Johns Hopkins Bloomberg School of Public Health,Baltimore,Maryland.

3Department of Civil Engineering,Johns Hopkins Whiting School of Engineering,Baltimore,Maryland.

出版信息

Disaster Med Public Health Prep. 2018 Feb;12(1):127-137. doi: 10.1017/dmp.2017.39. Epub 2017 Jun 21.

Abstract

OBJECTIVE

Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster.

METHODS

We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties.

RESULTS

The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature.

CONCLUSIONS

The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127-137).

摘要

目的

政策制定者和从业者需要评估社区在灾难中的恢复力。先前的研究将恢复力与社区功能混为一谈,将抵抗力和恢复力(恢复力的组成部分)合并,并依赖于一个静态模型来描述本质上是动态的过程。我们试图构建灾难后社区功能和恢复力的关联概念模型和计算模型。

方法

我们开发了一个系统动力学计算模型,用于预测灾难后的社区功能。该计算模型输出了灾难前、灾难期间和灾难后的社区功能随时间变化的过程,用于计算美国所有县的抵抗力、恢复力和恢复力。

结果

概念模型明确将恢复力与社区功能区分开来,并确定了两者的所有关键组成部分,这些组成部分被转化为一个具有联系和反馈的系统动力学计算模型。这些组成部分由县级公开可用的指标表示。基线社区功能、抵抗力、恢复力和恢复力呈现出一系列数值和地理聚类,与基于灾难文献的假设一致。

结论

这项工作具有透明度,促使不断完善,并确定了改进测量的领域。经过验证后,这样的模型可用于确定有效的投资,以增强社区恢复力。(《灾难医学与公共卫生防范》。2018年;12:127 - 137)

相似文献

引用本文的文献

6
Cross-sector collaboration practitioners weigh-in on this special issue.跨部门合作从业者对这一特刊发表意见。
Health Serv Res. 2024 Feb;59 Suppl 1(Suppl 1):e14267. doi: 10.1111/1475-6773.14267. Epub 2023 Dec 17.

本文引用的文献

3
Mainstreaming modeling and simulation to accelerate public health innovation.将建模和模拟纳入主流,加速公共卫生创新。
Am J Public Health. 2014 Jul;104(7):1181-6. doi: 10.2105/AJPH.2014.301873. Epub 2014 May 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验