Suppr超能文献

M-MRI:一种基于流形的高度加速动态磁共振成像框架。

M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.

作者信息

Nakarmi Ukash, Slavakis Konstantinos, Lyu Jingyuan, Ying Leslie

机构信息

Department of Electrical Engineering, University at Buffalo, The State University of New York.

Department of Biomedical Engineering, University at Buffalo, The State University of New York.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.

Abstract

High-dimensional signals, including dynamic magnetic resonance (dMR) images, often lie on low dimensional manifold. While many current dynamic magnetic resonance imaging (dMRI) reconstruction methods rely on priors which promote low-rank and sparsity, this paper proposes a novel manifold-based framework, we term M-MRI, for dMRI reconstruction from highly undersampled -space data. Images in dMRI are modeled as points on or close to a smooth manifold, and the underlying manifold geometry is learned through training data, called "navigator" signals. Moreover, low-dimensional embeddings which preserve the learned manifold geometry and effect concise data representations are computed. Capitalizing on the learned manifold geometry, two regularization loss functions are proposed to reconstruct dMR images from highly undersampled -space data. The advocated framework is validated using extensive numerical tests on phantom and in-vivo data sets.

摘要

包括动态磁共振(dMR)图像在内的高维信号通常位于低维流形上。虽然当前许多动态磁共振成像(dMRI)重建方法依赖于促进低秩和稀疏性的先验信息,但本文提出了一种新颖的基于流形的框架,我们称之为M-MRI,用于从高度欠采样的k空间数据进行dMRI重建。dMRI中的图像被建模为位于光滑流形上或接近光滑流形的点,并且通过称为“导航器”信号的训练数据来学习底层流形几何。此外,还计算了保留所学流形几何并实现简洁数据表示的低维嵌入。利用所学的流形几何,提出了两个正则化损失函数,用于从高度欠采样的k空间数据重建dMR图像。所倡导的框架通过对体模和体内数据集进行广泛的数值测试得到了验证。

相似文献

1
M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.
2
MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1213-1216. doi: 10.1109/ISBI.2018.8363789. Epub 2018 May 24.
3
A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
IEEE Trans Med Imaging. 2017 Nov;36(11):2297-2307. doi: 10.1109/TMI.2017.2723871. Epub 2017 Jul 5.
4
qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors.
Magn Reson Med. 2021 Aug;86(2):835-851. doi: 10.1002/mrm.28756. Epub 2021 Mar 24.
5
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.
6
Accelerated dynamic MR imaging with joint balanced low-rank tensor and sparsity constraints.
Med Phys. 2023 Sep;50(9):5434-5448. doi: 10.1002/mp.16573. Epub 2023 Jun 28.
7
A geometric framework for ensemble average propagator reconstruction from diffusion MRI.
Med Image Anal. 2019 Oct;57:89-105. doi: 10.1016/j.media.2019.06.012. Epub 2019 Jul 2.
8
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.
9
Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.
IEEE Trans Med Imaging. 2020 Mar;39(3):688-702. doi: 10.1109/TMI.2019.2934125. Epub 2019 Aug 9.
10
CS-MRI reconstruction based on analysis dictionary learning and manifold structure regularization.
Neural Netw. 2020 Mar;123:217-233. doi: 10.1016/j.neunet.2019.12.010. Epub 2019 Dec 17.

引用本文的文献

2
Multi-scale Unrolled Deep Learning Framework for Accelerated Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1056-1059. doi: 10.1109/isbi45749.2020.9098684. Epub 2020 May 22.
3
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.
4
MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1213-1216. doi: 10.1109/ISBI.2018.8363789. Epub 2018 May 24.

本文引用的文献

1
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
2
MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2014 Aug 20;16(1):63. doi: 10.1186/s12968-014-0063-3.
3
Manifold learning based ECG-free free-breathing cardiac CINE MRI.
J Magn Reson Imaging. 2015 Jun;41(6):1521-7. doi: 10.1002/jmri.24731. Epub 2014 Aug 14.
4
MRI temporal acceleration techniques.
J Magn Reson Imaging. 2012 Sep;36(3):543-60. doi: 10.1002/jmri.23640.
5
Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints.
IEEE Trans Med Imaging. 2012 Sep;31(9):1809-20. doi: 10.1109/TMI.2012.2203921. Epub 2012 Jun 8.
6
k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.
7
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.
9
An efficient method for dynamic magnetic resonance imaging.
IEEE Trans Med Imaging. 1994;13(4):677-86. doi: 10.1109/42.363100.
10
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验