Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.
Nat Struct Mol Biol. 2017 Aug;24(8):672-681. doi: 10.1038/nsmb.3434. Epub 2017 Jul 17.
The translational reactivation of maternal mRNAs encoding meiotic drivers in vertebrates is accomplished mainly by cytoplasmic polyadenylation. The cytoplasmic polyadenylation elements (CPEs) present in the 3' untranslated regions (3' UTRs) of these transcripts, together with their cognate CPE-binding proteins (CPEBs), define a combinatorial code that determines the timing and extent of translational activation upon meiosis resumption. In addition, the RNA-binding protein Musashi1 (Msi1) regulates polyadenylation of CPE-containing mRNAs by a yet undefined CPEB-dependent or CPEB-independent mechanism. Here we show that Msi1 alone does not support cytoplasmic polyadenylation, but its binding triggers the remodeling of RNA structure, thereby exposing adjacent CPEs and stimulating polyadenylation. In this way, Msi1 directs the preferential use of specific CPEs, which in turn affects the timing and extent of polyadenylation during meiotic progression. Genome-wide analysis of CPEB1- and Msi1-associated mRNAs identified 491 common targets, thus revealing a new layer of CPE-mediated translational control.
脊椎动物中,母源减数分裂驱动基因 mRNA 的翻译重激活主要通过细胞质多聚腺苷酸化实现。这些转录本 3' 非翻译区(3'UTR)中的细胞质多聚腺苷酸化元件(CPEs),以及与其互补的 CPE 结合蛋白(CPEB),共同定义了一个组合密码,决定了在减数分裂恢复时翻译激活的时间和程度。此外,RNA 结合蛋白 Musashi1(Msi1)通过尚未定义的 CPEB 依赖或非依赖机制调节 CPE 内含子 mRNA 的多聚腺苷酸化。在这里,我们表明 Msi1 本身不能支持细胞质多聚腺苷酸化,但它的结合触发了 RNA 结构的重塑,从而暴露了相邻的 CPEs 并刺激了多聚腺苷酸化。通过这种方式,Msi1 指导特定 CPE 的优先使用,进而影响减数分裂过程中的多聚腺苷酸化时间和程度。对 CPEB1 和 Msi1 相关 mRNA 的全基因组分析确定了 491 个共同靶标,从而揭示了 CPE 介导的翻译控制的一个新层面。