Department of Statistics, Columbia University, United States.
Department of Psychology and Center for Brain Science, Harvard University, United States.
Curr Opin Neurobiol. 2017 Oct;46:14-24. doi: 10.1016/j.conb.2017.06.004. Epub 2017 Jul 18.
Computational neuroscience is, to first order, dominated by two approaches: the 'bottom-up' approach, which searches for statistical patterns in large-scale neural recordings, and the 'top-down' approach, which begins with a theory of computation and considers plausible neural implementations. While this division is not clear-cut, we argue that these approaches should be much more intimately linked. From a Bayesian perspective, computational theories provide constrained prior distributions on neural data-albeit highly sophisticated ones. By connecting theory to observation via a probabilistic model, we provide the link necessary to test, evaluate, and revise our theories in a data-driven and statistically rigorous fashion. This review highlights examples of this theory-driven pipeline for neural data analysis in recent literature and illustrates it with a worked example based on the temporal difference learning model of dopamine.
“自下而上”的方法,它在大规模神经记录中寻找统计模式,以及“自上而下”的方法,它从计算理论开始,并考虑合理的神经实现。虽然这种划分并不明确,但我们认为这些方法应该更加紧密地联系在一起。从贝叶斯的角度来看,计算理论为神经数据提供了受约束的先验分布——尽管是非常复杂的分布。通过通过概率模型将理论与观察联系起来,我们提供了必要的联系,以数据驱动和统计严格的方式来测试、评估和修改我们的理论。这篇综述强调了最近文献中这种基于理论的神经数据分析管道的例子,并通过基于多巴胺的时间差分学习模型的实例来说明。