Suppr超能文献

利用计算理论约束神经数据的统计模型。

Using computational theory to constrain statistical models of neural data.

机构信息

Department of Statistics, Columbia University, United States.

Department of Psychology and Center for Brain Science, Harvard University, United States.

出版信息

Curr Opin Neurobiol. 2017 Oct;46:14-24. doi: 10.1016/j.conb.2017.06.004. Epub 2017 Jul 18.

Abstract

Computational neuroscience is, to first order, dominated by two approaches: the 'bottom-up' approach, which searches for statistical patterns in large-scale neural recordings, and the 'top-down' approach, which begins with a theory of computation and considers plausible neural implementations. While this division is not clear-cut, we argue that these approaches should be much more intimately linked. From a Bayesian perspective, computational theories provide constrained prior distributions on neural data-albeit highly sophisticated ones. By connecting theory to observation via a probabilistic model, we provide the link necessary to test, evaluate, and revise our theories in a data-driven and statistically rigorous fashion. This review highlights examples of this theory-driven pipeline for neural data analysis in recent literature and illustrates it with a worked example based on the temporal difference learning model of dopamine.

摘要

计算神经科学首先主要由两种方法主导

“自下而上”的方法,它在大规模神经记录中寻找统计模式,以及“自上而下”的方法,它从计算理论开始,并考虑合理的神经实现。虽然这种划分并不明确,但我们认为这些方法应该更加紧密地联系在一起。从贝叶斯的角度来看,计算理论为神经数据提供了受约束的先验分布——尽管是非常复杂的分布。通过通过概率模型将理论与观察联系起来,我们提供了必要的联系,以数据驱动和统计严格的方式来测试、评估和修改我们的理论。这篇综述强调了最近文献中这种基于理论的神经数据分析管道的例子,并通过基于多巴胺的时间差分学习模型的实例来说明。

相似文献

1
Using computational theory to constrain statistical models of neural data.利用计算理论约束神经数据的统计模型。
Curr Opin Neurobiol. 2017 Oct;46:14-24. doi: 10.1016/j.conb.2017.06.004. Epub 2017 Jul 18.
2
Theory and simulation in neuroscience.神经科学中的理论与模拟。
Science. 2012 Oct 5;338(6103):60-5. doi: 10.1126/science.1227356.
3
5
Foundations of computational neuroscience.计算神经科学基础。
Curr Opin Neurobiol. 2014 Apr;25:25-30. doi: 10.1016/j.conb.2013.10.005. Epub 2013 Dec 10.
10
PyRates-A Python framework for rate-based neural simulations.PyRates-一个基于速率的神经模拟的 Python 框架。
PLoS One. 2019 Dec 16;14(12):e0225900. doi: 10.1371/journal.pone.0225900. eCollection 2019.

引用本文的文献

3
Imaging whole-brain activity to understand behavior.通过成像全脑活动来理解行为。
Nat Rev Phys. 2022 May;4(5):292-305. doi: 10.1038/s42254-022-00430-w. Epub 2022 Mar 8.
4
Moving beyond generalization to accurate interpretation of flexible models.从泛化到灵活模型的准确解释
Nat Mach Intell. 2020 Nov;2(11):674-683. doi: 10.1038/s42256-020-00242-6. Epub 2020 Oct 26.
6
How learning unfolds in the brain: toward an optimization view.学习在大脑中是如何展开的:走向优化的观点。
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.
7
Scaling up psychology via Scientific Regret Minimization.通过科学后悔最小化扩大心理学。
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8825-8835. doi: 10.1073/pnas.1915841117. Epub 2020 Apr 2.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
3
Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling.
Neural Comput. 2016 Nov;28(11):2320-2351. doi: 10.1162/NECO_a_00883. Epub 2016 Aug 24.
4
Mapping Sub-Second Structure in Mouse Behavior.绘制小鼠行为中的亚秒级结构
Neuron. 2015 Dec 16;88(6):1121-1135. doi: 10.1016/j.neuron.2015.11.031.
8
Dimensionality reduction for large-scale neural recordings.大规模神经记录的降维处理
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
9
Pruning of memories by context-based prediction error.基于预测误差的记忆修剪。
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8997-9002. doi: 10.1073/pnas.1319438111. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验