Suppr超能文献

用于新型生物墨水开发的挤出式生物打印分辨率的数学模型

A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks.

作者信息

Suntornnond Ratima, Tan Edgar Yong Sheng, An Jia, Chua Chee Kai

机构信息

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798.

出版信息

Materials (Basel). 2016 Sep 6;9(9):756. doi: 10.3390/ma9090756.

Abstract

Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.

摘要

基于气动挤压的生物打印是一项新兴且有趣的技术,在生物医学应用中非常有用。然而,为了以足够的分辨率进行打印,生物打印机中的许多工艺参数需要被充分理解。本文提出了一个简单而准确的数学模型来预测连续水凝胶线的打印宽度,其中分辨率表示为喷嘴尺寸、压力和打印速度的函数。使用一种热响应性水凝胶——普朗尼克F127来验证模型预测。该模型可为未来基于气动挤压的生物打印相关研究以及开发新的生物墨水配方提供一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f406/5457067/ef467263fbae/materials-09-00756-g001.jpg

相似文献

3
Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
Front Bioeng Biotechnol. 2021 Oct 13;9:616753. doi: 10.3389/fbioe.2021.616753. eCollection 2021.
4
Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
Tissue Eng Part B Rev. 2022 Apr;28(2):451-463. doi: 10.1089/ten.TEB.2021.0026. Epub 2021 Jun 14.
5
7
Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
Front Bioeng Biotechnol. 2019 Oct 18;7:280. doi: 10.3389/fbioe.2019.00280. eCollection 2019.
9
Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol.
Biofabrication. 2021 Sep 23;13(4). doi: 10.1088/1758-5090/ac25ca.
10
Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
Adv Healthc Mater. 2020 Aug;9(15):e1901648. doi: 10.1002/adhm.201901648. Epub 2020 Apr 30.

引用本文的文献

5
Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments.
Biomimetics (Basel). 2024 Jul 29;9(8):460. doi: 10.3390/biomimetics9080460.
6
Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review.
Front Cell Dev Biol. 2023 Dec 7;11:1286223. doi: 10.3389/fcell.2023.1286223. eCollection 2023.
7
Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers.
3D Print Addit Manuf. 2023 Aug 1;10(4):816-827. doi: 10.1089/3dp.2021.0208. Epub 2023 Aug 9.
8
Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
3D Print Addit Manuf. 2023 Aug 1;10(4):828-854. doi: 10.1089/3dp.2021.0209. Epub 2023 Aug 9.
9
1Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection.
Int J Bioprint. 2022 Dec 9;9(2):649. doi: 10.18063/ijb.v9i2.649. eCollection 2023.
10
Error assessment and correction for extrusion-based bioprinting using computer vision method.
Int J Bioprint. 2022 Nov 16;9(1):644. doi: 10.18063/ijb.v9i1.644. eCollection 2023.

本文引用的文献

1
Development and characterisation of a new bioink for additive tissue manufacturing.
J Mater Chem B. 2014 Apr 28;2(16):2282-2289. doi: 10.1039/c3tb21280g. Epub 2014 Mar 17.
2
Skin Bioprinting: Impending Reality or Fantasy?
Trends Biotechnol. 2016 Sep;34(9):689-699. doi: 10.1016/j.tibtech.2016.04.006. Epub 2016 May 8.
4
Current advances and future perspectives in extrusion-based bioprinting.
Biomaterials. 2016 Jan;76:321-43. doi: 10.1016/j.biomaterials.2015.10.076. Epub 2015 Oct 31.
5
Strategies and Molecular Design Criteria for 3D Printable Hydrogels.
Chem Rev. 2016 Feb 10;116(3):1496-539. doi: 10.1021/acs.chemrev.5b00303. Epub 2015 Oct 23.
6
Bioprinting for cancer research.
Trends Biotechnol. 2015 Sep;33(9):504-13. doi: 10.1016/j.tibtech.2015.06.007. Epub 2015 Jul 24.
7
3D bioprinting of tissues and organs.
Nat Biotechnol. 2014 Aug;32(8):773-85. doi: 10.1038/nbt.2958.
8
Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications.
Int J Pharm. 2014 Sep 10;472(1-2):262-75. doi: 10.1016/j.ijpharm.2014.06.029. Epub 2014 Jun 17.
9
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.
Adv Mater. 2014 May 21;26(19):3124-30. doi: 10.1002/adma.201305506. Epub 2014 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验