Persson Rasmus A X, Pattni Viren, Singh Anurag, Kast Stefan M, Heyden Matthias
Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, DE-45470 Mülheim an der Ruhr, Germany.
Department of Chemistry, Indian Institute of Technology, Roorkee , IN-247667 Roorkee, Uttarakhand, India.
J Chem Theory Comput. 2017 Sep 12;13(9):4467-4481. doi: 10.1021/acs.jctc.7b00184. Epub 2017 Aug 25.
This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute-water and water-water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy.
本研究利用分子模拟探索了溶剂化离子和小分子三维环境中水分子的热力学和振动性质。液体溶剂中分子间振动光谱提供了有关局部势能面形状的详细信息,而局部势能面又决定了诸如熵等局部热力学性质。在此,我们使用两相热力学方法的空间分辨扩展,基于局部振动态密度(3D - 2PT)来提取该信息,以估算水合水的熵。结合溶质 - 水和水 - 水相互作用能的分析,这使我们能够解析对溶剂化焓、熵和自由能的局部贡献。我们使用这种方法来研究离子对其周围水氢键网络、分子间振动光谱以及由此产生的热力学性质的影响。在分子溶质的极性和非极性官能团的三维环境中,我们识别出不同的水合水种类,并根据其特征振动态密度和分子熵对它们进行分类。在每种情况下,我们都能够将局部水合水熵的变化归因于分子间振动光谱的特定变化。这为远红外吸收和拉曼光谱实验可获取的振动光谱的热力学解释提供了重要联系。我们的分析提供了关于疏水和亲水官能团水合作用的独特微观细节,这使我们能够识别决定对溶剂化熵进而对自由能有相关贡献的相互作用和分子自由度。