Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, Maryland, United States of America.
PLoS Comput Biol. 2013;9(1):e1002872. doi: 10.1371/journal.pcbi.1002872. Epub 2013 Jan 24.
We investigate the dynamics of a deterministic finite-sized network of synaptically coupled spiking neurons and present a formalism for computing the network statistics in a perturbative expansion. The small parameter for the expansion is the inverse number of neurons in the network. The network dynamics are fully characterized by a neuron population density that obeys a conservation law analogous to the Klimontovich equation in the kinetic theory of plasmas. The Klimontovich equation does not possess well-behaved solutions but can be recast in terms of a coupled system of well-behaved moment equations, known as a moment hierarchy. The moment hierarchy is impossible to solve but in the mean field limit of an infinite number of neurons, it reduces to a single well-behaved conservation law for the mean neuron density. For a large but finite system, the moment hierarchy can be truncated perturbatively with the inverse system size as a small parameter but the resulting set of reduced moment equations that are still very difficult to solve. However, the entire moment hierarchy can also be re-expressed in terms of a functional probability distribution of the neuron density. The moments can then be computed perturbatively using methods from statistical field theory. Here we derive the complete mean field theory and the lowest order second moment corrections for physiologically relevant quantities. Although we focus on finite-size corrections, our method can be used to compute perturbative expansions in any parameter.
我们研究了一个确定性的有限大小的突触耦合放电神经元网络的动力学,并提出了一种用于在微扰展开中计算网络统计数据的形式主义。展开的小参数是网络中神经元的倒数。网络动力学完全由一个神经元群体密度来描述,这个密度服从类似于等离子体动理学中的 Klimontovich 方程的守恒定律。Klimontovich 方程没有良好的解,但可以用一个由良好行为的矩方程组成的耦合系统重新表述,称为矩层次。矩层次是不可能求解的,但在神经元数量无穷大的平均场极限下,它简化为一个单一的、良好的神经元密度平均守恒定律。对于一个大但有限的系统,矩层次可以用逆系统大小作为小参数进行微扰截断,但得到的一组简化矩方程仍然非常难以求解。然而,整个矩层次也可以用神经元密度的泛函概率分布来重新表示。然后可以使用统计场论中的方法来微扰计算矩。在这里,我们推导出了完整的平均场理论和生理相关量的最低阶二阶矩修正。虽然我们专注于有限尺寸的修正,但我们的方法可以用于计算任何参数的微扰展开。