Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario Canada; and
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada.
J Appl Physiol (1985). 2017 Nov 1;123(5):1145-1149. doi: 10.1152/japplphysiol.00651.2017. Epub 2017 Aug 10.
Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight.
无创手指动脉压力波形的脉搏轮廓分析提供了一种方便的手段来估计心输出量 (Q̇)。该方法已在多种情况下与标准方法进行了比较,但从未在太空飞行中进行过比较。我们将脉搏轮廓分析与 Modelflow 算法进行了比较,以评估 9 名健康男性宇航员在飞行前基线测试和长期太空飞行的最后一个月期间通过再呼吸获得的 Q̇估计值。通过 Modelflow 分析,仰卧基线时的每搏量大于坐姿基线或飞行中。仰卧基线时心率降低,因此 Modelflow 估计的 Q̇在仰卧位(7.02 ± 1.31 l/min,平均值 ± 标准差)、坐姿(6.60 ± 1.95 l/min)或飞行中(5.91 ± 1.15 l/min)无差异。相比之下,再呼吸估计的 Q̇从坐姿基线(4.76 ± 0.67 l/min)增加到飞行中(7.00 ± 1.39 l/min,方法和太空飞行的显著交互效应,<0.001)。脉搏轮廓分析利用一个三元素的 Windkessel 模型,该模型包含依赖于主动脉压力-面积关系的参数,这些参数被认为代表整个循环。我们提出,在太空飞行条件下,内脏循环顺应性的大幅增加使模型无效。未来的太空飞行研究测量心脏功能需要考虑到这一重要限制,以评估 Q̇和每搏量的绝对值。无创评估人类太空飞行中的心脏功能是监测宇航员健康的重要工具。这项研究表明,通过手指动脉血压的脉搏轮廓分析来估计心输出量,无法跟踪再呼吸法测量到的 46%的增加。这些结果强烈表明,需要替代不依赖脉搏轮廓分析的方法来跟踪太空飞行中的心脏功能。