Suppr超能文献

利用 OCHEM 平台对一大组金属和金属氧化物纳米颗粒的毒性进行建模。

Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.

机构信息

Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine.

Moscow State University, Chemistry Department, 1 Leninskie Gory, bldg. 3, 119991, Moscow, Russia.

出版信息

Food Chem Toxicol. 2018 Feb;112:507-517. doi: 10.1016/j.fct.2017.08.008. Epub 2017 Aug 9.

Abstract

Inorganic nanomaterials have become one of the new areas of modern knowledge and technology and have already found an increasing number of applications. However, some nanoparticles show toxicity to living organisms, and can potentially have a negative influence on environmental ecosystems. While toxicity can be determined experimentally, such studies are time consuming and costly. Computational toxicology can provide an alternative approach and there is a need to develop methods to reliably assess Quantitative Structure-Property Relationships for nanomaterials (nano-QSPRs). Importantly, development of such models requires careful collection and curation of data. This article overviews freely available nano-QSPR models, which were developed using the Online Chemical Modeling Environment (OCHEM). Multiple data on toxicity of nanoparticles to different living organisms were collected from the literature and uploaded in the OCHEM database. The main characteristics of nanoparticles such as chemical composition of nanoparticles, average particle size, shape, surface charge and information about the biological test species were used as descriptors for developing QSPR models. QSPR methodologies used Random Forests (WEKA-RF), k-Nearest Neighbors and Associative Neural Networks. The predictive ability of the models was tested through cross-validation, giving cross-validated coefficients q = 0.58-0.80 for regression models and balanced accuracies of 65-88% for classification models. These results matched the predictions for the test sets used to develop the models. The proposed nano-QSPR models and uploaded data are freely available online at http://ochem.eu/article/103451 and can be used for estimation of toxicity of new and emerging nanoparticles at the early stages of nanomaterial development.

摘要

无机纳米材料已成为现代知识和技术的新领域之一,已经找到了越来越多的应用。然而,一些纳米粒子对生物体表现出毒性,并且可能对环境生态系统产生负面影响。虽然毒性可以通过实验来确定,但这样的研究既耗时又昂贵。计算毒理学可以提供一种替代方法,因此需要开发可靠评估纳米材料定量结构-性质关系(nano-QSPR)的方法。重要的是,此类模型的开发需要仔细收集和整理数据。本文概述了使用在线化学建模环境(OCHEM)开发的免费 nano-QSPR 模型。从文献中收集了关于不同生物体的纳米粒子毒性的多个数据,并将其上传到 OCHEM 数据库中。纳米粒子的主要特性,如纳米粒子的化学成分、平均粒径、形状、表面电荷以及有关生物测试物种的信息,被用作开发 QSPR 模型的描述符。QSPR 方法学使用随机森林(WEKA-RF)、k-最近邻和关联神经网络。通过交叉验证测试了模型的预测能力,回归模型的交叉验证系数 q 为 0.58-0.80,分类模型的平衡准确率为 65-88%。这些结果与用于开发模型的测试集的预测结果相匹配。所提出的 nano-QSPR 模型和上传的数据可在 http://ochem.eu/article/103451 上免费获得,并可用于在纳米材料开发的早期阶段估算新型和新兴纳米粒子的毒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验