Olson Kenneth R, Gao Yan, Arif Faihaan, Arora Kanika, Patel Shivali, DeLeon Eric, Straub Karl D
Indiana University School of Medicine-South Bend Center, South Bend, Indiana;
Indiana University School of Medicine-South Bend Center, South Bend, Indiana.
Am J Physiol Regul Integr Comp Physiol. 2017 Oct 1;313(4):R340-R346. doi: 10.1152/ajpregu.00202.2017. Epub 2017 Aug 23.
Fluorescence spectroscopy and microscopy have been used extensively to monitor biomolecules, especially reactive oxygen species (ROS) and, more recently, reactive sulfide (RSS) species. Nearly all fluorophores are either excited by or emit light between 450 and 550 nm, which is similar to the absorbance of heme proteins and metal-centered porphyrins. Here we examined the effects of catalase (Cat), reduced and oxidized hemoglobin (Hb and metHb), albumin (alb), manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), iron protoporphyrin IX (hemin), and copper protoporphyrin IX (CuPPIX) on the fluorescence properties of fluorescein. We also examined the effects of catalase and MnTBAP on fluorophores for ROS (dichlorofluorescein, DCF), polysulfides (3',6'-di(-thiosalicyl)fluorescein, SSP4), and HS (7-azido-4-methylcoumarin, AzMC) previously activated by HO, a mixed polysulfide (HS, = 1-7) and HS, respectively. All except albumin concentration dependently inhibited fluorophore fluorescence and absorbed light between 450 and 550 nm, suggesting that the inhibitory effect was physical not catalytic. Catalase inhibition of fluorescein fluorescence was unaffected by sodium azide, dithiothreitol, diamide, tris(2-carboxyethyl)phosphine (TCEP), or iodoacetate, supporting a physical inhibitory mechanism. Catalase and TBAP augmented, then inhibited DCF fluorescence, but only inhibited SSP4 and AzMC fluorescence indicative of a substrate-specific catalytic oxidation of DCF and nonspecific fluorescence inhibition of all three fluorophores. These results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins.
荧光光谱法和显微镜技术已被广泛用于监测生物分子,特别是活性氧(ROS),以及最近的活性硫化物(RSS)。几乎所有的荧光团要么被450至550纳米之间的光激发,要么在该波长范围内发射光,这与血红素蛋白和金属中心卟啉的吸光度相似。在这里,我们研究了过氧化氢酶(Cat)、还原型和氧化型血红蛋白(Hb和metHb)、白蛋白(alb)、四(4-苯甲酸)卟啉氯化锰(III)(MnTBAP)、铁原卟啉IX(血红素)和铜原卟啉IX(CuPPIX)对荧光素荧光特性的影响。我们还研究了过氧化氢酶和MnTBAP对ROS荧光团(二氯荧光素,DCF)、多硫化物(3',6'-二(-硫代水杨酸)荧光素,SSP4)和HS(7-叠氮基-4-甲基香豆素,AzMC)的影响,这些荧光团之前分别被HO、混合多硫化物(HS,n = 1-7)和HS激活。除白蛋白外,所有物质均浓度依赖性地抑制荧光团荧光,并在450至550纳米之间吸收光,这表明抑制作用是物理性的而非催化性的。过氧化氢酶对荧光素荧光的抑制作用不受叠氮化钠、二硫苏糖醇、二酰胺、三(2-羧乙基)膦(TCEP)或碘乙酸的影响,支持物理抑制机制。过氧化氢酶和TBAP先增强,然后抑制DCF荧光,但仅抑制SSP4和AzMC荧光,这表明DCF存在底物特异性催化氧化,而所有三种荧光团均存在非特异性荧光抑制。这些结果表明,在金属中心卟啉附近使用任何荧光示踪剂时都必须谨慎。