Matson W R, Gamache P G, Beal M F, Bird E D
Life Sci. 1987 Aug 17;41(7):905-8. doi: 10.1016/0024-3205(87)90192-5.
The use of multiple parameter assays of entire metabolic pathways is potentially a powerful tool for unraveling mechanisms of disorders or drug action and classification of neurological diseases. Coulometric electrode series array sensors, coupled with liquid chromatography (n-ELC), provide a route to multiplying the resolving power of conventional LC by factors of 10 to 50. Since the original description of the n-ELC concept by Matson et al. (1), fundamental issues of optimizing sensor design and integration with computer controlled LC systems have been addressed. Femtogram level potential time (ET) separations can now be performed for multiple components in both isocratic and gradient modes. A 56-component isocratic method for the study of the kynurenine system in Huntington's Disease (HD) is presented as an indication of the analytical definitions and nomenclature used to qualify an n-ELC procedure, and an indication of the implications of multiparameter data bases on data handling and experimental design.
对整个代谢途径进行多参数检测,有可能成为揭示疾病机制或药物作用机制以及对神经疾病进行分类的有力工具。库仑电极串联阵列传感器与液相色谱(n-ELC)相结合,为将传统液相色谱的分离能力提高10到50倍提供了一条途径。自从Matson等人首次描述n-ELC概念以来,已经解决了优化传感器设计以及与计算机控制的液相色谱系统集成的基本问题。现在可以在等度和梯度模式下对多种成分进行飞克级别的电位时间(ET)分离。本文介绍了一种用于研究亨廷顿舞蹈病(HD)中犬尿氨酸系统的56组分等度方法,以此说明用于鉴定n-ELC程序的分析定义和术语,以及多参数数据库对数据处理和实验设计的影响。