Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL-61614, Poznan, Poland.
Nat Commun. 2017 Sep 4;8(1):415. doi: 10.1038/s41467-017-00115-4.
Heat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge. In this work we use the contactless two-laser Raman thermometry to study heat dissipation in periodic porous membranes at high temperatures via lattice conduction and air-mediated losses. We find the reduction of the thermal conductivity and its temperature dependence closely correlated with the structure feature size. On the basis of two-phonon Raman spectra, we attribute this behaviour to diffuse (incoherent) phonon-boundary scattering. Furthermore, we investigate and quantify the heat dissipation via natural air-mediated cooling, which can be tuned by engineering the porosity.Nanostructuring of silicon allows acoustic phonon engineering, but the mechanism of related thermal transport in these structures is not fully understood. Here, the authors study the heat dissipation in silicon membranes with periodic nanoholes and show the importance of incoherent scattering.
通过亚微米多孔薄自由站立膜可以有效地对硅中的热传导进行工程设计。可调谐的热特性使这些结构成为集成热管理单元的良好候选者,例如余热回收、整流或高效散热。然而,可能的应用需要在高温下进行详细的热特性分析,到目前为止,这一直是一个实验挑战。在这项工作中,我们使用非接触式双激光拉曼测温法通过晶格传导和空气介导损耗来研究高温下周期性多孔膜中的散热情况。我们发现热导率的降低及其与温度的依赖关系与结构特征尺寸密切相关。基于双声子拉曼光谱,我们将这种行为归因于扩散(非相干)声子-边界散射。此外,我们通过工程设计孔隙率来研究和量化通过自然空气介导冷却的散热,这种冷却可以进行调节。硅的纳米结构化允许对声波进行工程设计,但这些结构中相关热传输的机制尚未完全了解。在这里,作者研究了具有周期性纳米孔的硅膜中的散热情况,并表明了非相干散射的重要性。