School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
Cumming School of Medicine, University of Calgary, Calgary, T2N4N1, Canada.
Sci Rep. 2017 Sep 11;7(1):11174. doi: 10.1038/s41598-017-10724-0.
Analysis of drug-target interactions (DTIs) is of great importance in developing new drug candidates for known protein targets or discovering new targets for old drugs. However, the experimental approaches for identifying DTIs are expensive, laborious and challenging. In this study, we report a novel computational method for predicting DTIs using the highly discriminative information of drug-target interactions and our newly developed discriminative vector machine (DVM) classifier. More specifically, each target protein sequence is transformed as the position-specific scoring matrix (PSSM), in which the evolutionary information is retained; then the local binary pattern (LBP) operator is used to calculate the LBP histogram descriptor. For a drug molecule, a novel fingerprint representation is utilized to describe its chemical structure information representing existence of certain functional groups or fragments. When applying the proposed method to the four datasets (Enzyme, GPCR, Ion Channel and Nuclear Receptor) for predicting DTIs, we obtained good average accuracies of 93.16%, 89.37%, 91.73% and 92.22%, respectively. Furthermore, we compared the performance of the proposed model with that of the state-of-the-art SVM model and other previous methods. The achieved results demonstrate that our method is effective and robust and can be taken as a useful tool for predicting DTIs.
药物-靶点相互作用(DTIs)的分析对于开发针对已知蛋白质靶点的新药候选物或发现旧药物的新靶点非常重要。然而,鉴定 DTIs 的实验方法既昂贵又费力,具有挑战性。在这项研究中,我们报告了一种使用药物-靶点相互作用的高度判别信息和我们新开发的判别向量机(DVM)分类器预测 DTIs 的新计算方法。更具体地说,将每个靶蛋白序列转换为位置特异性评分矩阵(PSSM),其中保留了进化信息;然后使用局部二值模式(LBP)算子计算 LBP 直方图描述符。对于药物分子,利用一种新的指纹表示方法来描述其化学结构信息,代表存在某些功能基团或片段。当将所提出的方法应用于预测 DTIs 的四个数据集(酶、GPCR、离子通道和核受体)时,我们分别获得了 93.16%、89.37%、91.73%和 92.22%的良好平均准确率。此外,我们还比较了所提出模型与最先进的 SVM 模型和其他先前方法的性能。所获得的结果表明,我们的方法是有效和稳健的,可以作为预测 DTIs 的有用工具。