Suppr超能文献

细胞核形状波动的起源。

On the origin of shape fluctuations of the cell nucleus.

机构信息

Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003.

Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10338-10343. doi: 10.1073/pnas.1702226114. Epub 2017 Sep 12.

Abstract

The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

摘要

核膜(NE)在细胞质和核质之间提供了一个物理边界,夹在细胞内两个高度活跃的系统之间:细胞骨架和染色质。NE 定义了细胞核的形状和大小,在细胞周期中会增加,以容纳染色体解凝聚和基因组复制。在这项工作中,我们研究了人类细胞中秒级短时间尺度的核形状波动。使用旋转盘共聚焦显微镜,我们观察到由荧光标记的核纤层 A 可视化的 NE 和在其下的染色质球表面(CGS)的快速波动,由荧光标记的组蛋白 H2B 可视化。我们的发现表明,CGS 和 NE 的波动幅度在细胞周期中单调减小,可作为可靠的细胞周期阶段指标。值得注意的是,我们发现,虽然 CGS 和 NE 通常相位波动,但它们确实表现出局部的非相位运动区域,导致 NE 和 CGS 分离。为了探索这些形状波动的机制,我们使用生化扰动。我们发现 CGS 和 NE 的形状波动既受热驱动又受主动驱动,后者是由染色质和细胞骨架的力引起的。这种波动可能会影响基因调控,并通过例如在 NE 附近搅拌分子或增加通过核孔的分子通量,为异常高的核转运速率做出贡献。

相似文献

1
On the origin of shape fluctuations of the cell nucleus.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10338-10343. doi: 10.1073/pnas.1702226114. Epub 2017 Sep 12.
3
The Dynamic Nature of the Nuclear Envelope.
Curr Biol. 2018 Apr 23;28(8):R487-R497. doi: 10.1016/j.cub.2018.01.073.
4
Pushing the envelope: structure, function, and dynamics of the nuclear periphery.
Annu Rev Cell Dev Biol. 2005;21:347-80. doi: 10.1146/annurev.cellbio.21.090704.151152.
5
Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins.
J Cell Sci. 2006 Nov 1;119(Pt 21):4442-51. doi: 10.1242/jcs.03207.
6
Shaping the endoplasmic reticulum into the nuclear envelope.
J Cell Sci. 2008 Jan 15;121(Pt 2):137-42. doi: 10.1242/jcs.005777.
7
Till disassembly do us part: a happy marriage of nuclear envelope and chromatin.
J Biochem. 2008 Feb;143(2):155-61. doi: 10.1093/jb/mvm219. Epub 2007 Nov 12.
8
Breaching the Barrier-The Nuclear Envelope in Virus Infection.
J Mol Biol. 2016 May 22;428(10 Pt A):1949-61. doi: 10.1016/j.jmb.2015.10.001. Epub 2015 Oct 29.
9
Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes.
PLoS Pathog. 2017 Aug 21;13(8):e1006570. doi: 10.1371/journal.ppat.1006570. eCollection 2017 Aug.
10
Nuclear envelope and chromatin, lock and key of genome integrity.
Int Rev Cell Mol Biol. 2015;317:267-330. doi: 10.1016/bs.ircmb.2015.03.001. Epub 2015 Mar 30.

引用本文的文献

1
Quantifying Nuclear Shape Fluctuations During Early Mitosis.
Methods Mol Biol. 2025;2958:151-158. doi: 10.1007/978-1-0716-4714-1_10.
2
Differential Crosslinking and Contractile Motors Drive Nuclear Chromatin Compaction.
bioRxiv. 2025 Jul 27:2025.07.24.666416. doi: 10.1101/2025.07.24.666416.
4
A Method to Visualize Cell Proliferation of : A Case Study of the Root Apical Meristem.
Plant Direct. 2025 Apr 28;9(4):e70060. doi: 10.1002/pld3.70060. eCollection 2025 Apr.
5
Actin from within - how nuclear myosins and actin regulate nuclear architecture and mechanics.
J Cell Sci. 2025 Feb 1;138(3). doi: 10.1242/jcs.263550. Epub 2025 Feb 10.
6
Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival.
Cancer Res Commun. 2025 Jan 1;5(1):39-53. doi: 10.1158/2767-9764.CRC-24-0558.
8
Curvature fluctuations of fluid vesicles reveal hydrodynamic dissipation within the bilayer.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2413557121. doi: 10.1073/pnas.2413557121. Epub 2024 Oct 23.
9
Transcription-dependent mobility of single genes and genome-wide motions in live human cells.
Nat Commun. 2024 Oct 22;15(1):8879. doi: 10.1038/s41467-024-51149-4.
10
Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells.
bioRxiv. 2024 Sep 7:2024.09.07.611779. doi: 10.1101/2024.09.07.611779.

本文引用的文献

1
The nuclear pore complex: understanding its function through structural insight.
Nat Rev Mol Cell Biol. 2017 Feb;18(2):73-89. doi: 10.1038/nrm.2016.147. Epub 2016 Dec 21.
2
Polymer translocation through nano-pores in vibrating thin membranes.
Sci Rep. 2016 Dec 9;6:38558. doi: 10.1038/srep38558.
3
Membrane stiffness is modified by integral membrane proteins.
Soft Matter. 2016 Sep 20;12(37):7792-7803. doi: 10.1039/c6sm01186a.
4
Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.
5
Nuclear deformability and telomere dynamics are regulated by cell geometric constraints.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E32-40. doi: 10.1073/pnas.1513189113. Epub 2015 Dec 22.
6
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.
7
Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells.
Biophys J. 2015 Jun 16;108(12):2794-806. doi: 10.1016/j.bpj.2015.05.005.
8
The tethering of chromatin to the nuclear envelope supports nuclear mechanics.
Nat Commun. 2015 Jun 15;6:7159. doi: 10.1038/ncomms8159.
9
A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells.
J Cell Biol. 2014 Apr 14;205(1):83-96. doi: 10.1083/jcb.201311104. Epub 2014 Apr 7.
10
Robust measurement of membrane bending moduli using light sheet fluorescence imaging of vesicle fluctuations.
Langmuir. 2013 Nov 26;29(47):14588-94. doi: 10.1021/la403837d. Epub 2013 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验