Suppr超能文献

相似文献

3
Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
J Biomed Mater Res A. 2017 Apr;105(4):1009-1018. doi: 10.1002/jbm.a.35971. Epub 2017 Feb 1.
4
Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
J Biomed Mater Res A. 2017 May;105(5):1457-1468. doi: 10.1002/jbm.a.36036. Epub 2017 Feb 25.
5
Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
J Biomed Mater Res A. 2008 Mar 15;84(4):899-907. doi: 10.1002/jbm.a.31375.
6
Alginate-based hydrogels with improved adhesive properties for cell encapsulation.
Int J Biol Macromol. 2015;78:72-8. doi: 10.1016/j.ijbiomac.2015.03.061. Epub 2015 Apr 4.
7
Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
Appl Biochem Biotechnol. 2014 May;173(2):433-48. doi: 10.1007/s12010-014-0851-0. Epub 2014 Apr 12.
8
Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:44-51. doi: 10.1016/j.msec.2017.11.025. Epub 2017 Nov 23.
9
3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
Adv Mater. 2015 Jul 15;27(27):4035-40. doi: 10.1002/adma.201501099. Epub 2015 Jun 1.
10
Alginate hydrogels as biomaterials.
Macromol Biosci. 2006 Aug 7;6(8):623-33. doi: 10.1002/mabi.200600069.

引用本文的文献

1
An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications.
Materials (Basel). 2025 Jun 23;18(13):2978. doi: 10.3390/ma18132978.
2
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.
3
Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications.
Biomacromolecules. 2025 Jan 13;26(1):85-117. doi: 10.1021/acs.biomac.4c01004. Epub 2024 Dec 3.
4
3D-Printed Polymeric Biomaterials for Health Applications.
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
5
Facile photopatterning of perfusable microchannels in hydrogels for microphysiological systems.
Nat Protoc. 2025 Jan;20(1):272-292. doi: 10.1038/s41596-024-01041-8. Epub 2024 Sep 12.
6
Graphene oxide nanosheets augment silk fibroin aerogels for enhanced water stability and oil adsorption.
Nanoscale Adv. 2023 Oct 6;5(22):6078-6092. doi: 10.1039/d3na00350g. eCollection 2023 Nov 7.
7
Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments.
Adv Mater. 2023 Dec;35(52):e2306765. doi: 10.1002/adma.202306765. Epub 2023 Nov 22.
8
Recent Advances in 3D Printing of Biomedical Sensing Devices.
Adv Funct Mater. 2022 Feb 23;32(9). doi: 10.1002/adfm.202107671. Epub 2021 Nov 25.
9
Synthesis of a novel monofilament bioabsorbable suture for biomedical applications.
J Biomed Mater Res B Appl Biomater. 2022 Oct;110(10):2189-2210. doi: 10.1002/jbm.b.35069. Epub 2022 Apr 4.
10
Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles.
ACS Biomater Sci Eng. 2022 May 9;8(5):1829-1840. doi: 10.1021/acsbiomaterials.1c01560. Epub 2022 Apr 1.

本文引用的文献

1
'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.
Adv Healthc Mater. 2017 Aug;6(16). doi: 10.1002/adhm.201700264. Epub 2017 May 30.
2
Advances in engineering hydrogels.
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
3
Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
Adv Healthc Mater. 2016 Oct;5(19):2488-2492. doi: 10.1002/adhm.201600636. Epub 2016 Sep 1.
4
3D-printing of transparent bio-microfluidic devices in PEG-DA.
Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.
5
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
6
The upcoming 3D-printing revolution in microfluidics.
Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21.
7
Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry.
PLoS One. 2016 Apr 14;11(4):e0153471. doi: 10.1371/journal.pone.0153471. eCollection 2016.
8
High-Resolution Projection Microstereolithography for Patterning of Neovasculature.
Adv Healthc Mater. 2016 Mar 9;5(5):610-9. doi: 10.1002/adhm.201500721. Epub 2015 Dec 22.
9
Gap geometry dictates epithelial closure efficiency.
Nat Commun. 2015 Jul 9;6:7683. doi: 10.1038/ncomms8683.
10
Dynamic phototuning of 3D hydrogel stiffness.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1953-8. doi: 10.1073/pnas.1421897112. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验