Suppr超能文献

离子交联海藻酸钠水凝胶的立体光刻打印用于可降解生物材料和微流控。

Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.

机构信息

School of Engineering, Center for Biomedical Engineering, Institute for Molecular & Nanoscale Innovation, Brown University, 184 Hope St, Box D, Providence, RI 02912, USA.

出版信息

Lab Chip. 2017 Oct 11;17(20):3474-3488. doi: 10.1039/c7lc00694b.

Abstract

3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

摘要

3D 打印具有时空功能的生物材料可以实现对流体流动和游动细胞的界面操控。然而,这种动态生物材料的实施具有挑战性,因为它们必须对多种生物相容的刺激做出响应。在这里,我们展示了使用非共价(离子)交联的立体光刻打印水凝胶,这使得可以进行具有受控降解的可逆图案化。我们使用海藻酸钠、光酸产生剂和各种二价阳离子盐的组合来演示这种方法,这些可以用于调整水凝胶的降解动力学、图案保真度和机械性能。这种方法首先用于在第二个包封水凝胶内模板化可灌注的微流控通道,用于 T 型接头和梯度装置。打印的海藻酸钠微结构的存在和降解进一步被证实对上皮细胞的毒性最小。可降解的海藻酸盐屏障用于从不同的初始几何形状引导细胞的集体迁移,揭示了前沿速度和先导细胞形成的差异。总的来说,这种使用非共价交联的基于光的 3D 打印的演示可能会实现自适应和响应刺激的生物材料,这些生物材料可用于仿生传感、致动、药物输送和组织工程。

相似文献

3
Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
J Biomed Mater Res A. 2017 Apr;105(4):1009-1018. doi: 10.1002/jbm.a.35971. Epub 2017 Feb 1.
4
Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
J Biomed Mater Res A. 2017 May;105(5):1457-1468. doi: 10.1002/jbm.a.36036. Epub 2017 Feb 25.
5
Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
J Biomed Mater Res A. 2008 Mar 15;84(4):899-907. doi: 10.1002/jbm.a.31375.
6
Alginate-based hydrogels with improved adhesive properties for cell encapsulation.
Int J Biol Macromol. 2015;78:72-8. doi: 10.1016/j.ijbiomac.2015.03.061. Epub 2015 Apr 4.
7
Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
Appl Biochem Biotechnol. 2014 May;173(2):433-48. doi: 10.1007/s12010-014-0851-0. Epub 2014 Apr 12.
8
Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:44-51. doi: 10.1016/j.msec.2017.11.025. Epub 2017 Nov 23.
9
3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
Adv Mater. 2015 Jul 15;27(27):4035-40. doi: 10.1002/adma.201501099. Epub 2015 Jun 1.
10
Alginate hydrogels as biomaterials.
Macromol Biosci. 2006 Aug 7;6(8):623-33. doi: 10.1002/mabi.200600069.

引用本文的文献

1
An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications.
Materials (Basel). 2025 Jun 23;18(13):2978. doi: 10.3390/ma18132978.
2
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.
3
Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications.
Biomacromolecules. 2025 Jan 13;26(1):85-117. doi: 10.1021/acs.biomac.4c01004. Epub 2024 Dec 3.
4
3D-Printed Polymeric Biomaterials for Health Applications.
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
5
Facile photopatterning of perfusable microchannels in hydrogels for microphysiological systems.
Nat Protoc. 2025 Jan;20(1):272-292. doi: 10.1038/s41596-024-01041-8. Epub 2024 Sep 12.
6
Graphene oxide nanosheets augment silk fibroin aerogels for enhanced water stability and oil adsorption.
Nanoscale Adv. 2023 Oct 6;5(22):6078-6092. doi: 10.1039/d3na00350g. eCollection 2023 Nov 7.
7
Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments.
Adv Mater. 2023 Dec;35(52):e2306765. doi: 10.1002/adma.202306765. Epub 2023 Nov 22.
8
Recent Advances in 3D Printing of Biomedical Sensing Devices.
Adv Funct Mater. 2022 Feb 23;32(9). doi: 10.1002/adfm.202107671. Epub 2021 Nov 25.
9
Synthesis of a novel monofilament bioabsorbable suture for biomedical applications.
J Biomed Mater Res B Appl Biomater. 2022 Oct;110(10):2189-2210. doi: 10.1002/jbm.b.35069. Epub 2022 Apr 4.
10
Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles.
ACS Biomater Sci Eng. 2022 May 9;8(5):1829-1840. doi: 10.1021/acsbiomaterials.1c01560. Epub 2022 Apr 1.

本文引用的文献

1
'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.
Adv Healthc Mater. 2017 Aug;6(16). doi: 10.1002/adhm.201700264. Epub 2017 May 30.
2
Advances in engineering hydrogels.
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
3
Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
Adv Healthc Mater. 2016 Oct;5(19):2488-2492. doi: 10.1002/adhm.201600636. Epub 2016 Sep 1.
4
3D-printing of transparent bio-microfluidic devices in PEG-DA.
Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.
5
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
6
The upcoming 3D-printing revolution in microfluidics.
Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21.
7
Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry.
PLoS One. 2016 Apr 14;11(4):e0153471. doi: 10.1371/journal.pone.0153471. eCollection 2016.
8
High-Resolution Projection Microstereolithography for Patterning of Neovasculature.
Adv Healthc Mater. 2016 Mar 9;5(5):610-9. doi: 10.1002/adhm.201500721. Epub 2015 Dec 22.
9
Gap geometry dictates epithelial closure efficiency.
Nat Commun. 2015 Jul 9;6:7683. doi: 10.1038/ncomms8683.
10
Dynamic phototuning of 3D hydrogel stiffness.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1953-8. doi: 10.1073/pnas.1421897112. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验