Suppr超能文献

Sde2 是一种内含子特异性的前体 mRNA 剪接调节剂,由泛素样加工激活。

Sde2 is an intron-specific pre-mRNA splicing regulator activated by ubiquitin-like processing.

机构信息

Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.

出版信息

EMBO J. 2018 Jan 4;37(1):89-101. doi: 10.15252/embj.201796751. Epub 2017 Sep 25.

Abstract

The expression of intron-containing genes in eukaryotes requires generation of protein-coding messenger RNAs (mRNAs) via RNA splicing, whereby the spliceosome removes non-coding introns from pre-mRNAs and joins exons. Spliceosomes must ensure accurate removal of highly diverse introns. We show that Sde2 is a ubiquitin-fold-containing splicing regulator that supports splicing of selected pre-mRNAs in an intron-specific manner in Both fission yeast and human Sde2 are translated as inactive precursor proteins harbouring the ubiquitin-fold domain linked through an invariant GGKGG motif to a C-terminal domain (referred to as Sde2-C). Precursor processing after the first di-glycine motif by the ubiquitin-specific proteases Ubp5 and Ubp15 generates a short-lived activated Sde2-C fragment with an N-terminal lysine residue, which subsequently gets incorporated into spliceosomes. Absence of Sde2 or defects in Sde2 activation both result in inefficient excision of selected introns from a subset of pre-mRNAs. Sde2 facilitates spliceosomal association of Cactin/Cay1, with a functional link between Sde2 and Cactin further supported by genetic interactions and pre-mRNA splicing assays. These findings suggest that ubiquitin-like processing of Sde2 into a short-lived activated form may function as a checkpoint to ensure proper splicing of certain pre-mRNAs in fission yeast.

摘要

真核生物内含子基因的表达需要通过 RNA 剪接生成编码蛋白质的信使 RNA(mRNA),其中剪接体从前体 mRNA 中去除非编码内含子,并连接外显子。剪接体必须确保准确去除高度多样化的内含子。我们表明 Sde2 是一种含有泛素折叠结构域的剪接调节因子,以内含子特异性的方式支持裂殖酵母和人类 Sde2 中选定的前体 mRNA 的剪接。裂殖酵母和人类 Sde2 均被翻译为无活性的前体蛋白,该蛋白通过不变的 GGKGG 基序将泛素折叠结构域与 C 端结构域(称为 Sde2-C)连接在一起。第一个二甘氨酸基序之后,由泛素特异性蛋白酶 Ubp5 和 Ubp15 对前体进行加工,生成一个半衰期短的活性 Sde2-C 片段,其 N 端带有一个赖氨酸残基,随后该片段被整合到剪接体中。Sde2 的缺失或 Sde2 激活的缺陷都会导致从一组前体 mRNA 中切除选定的内含子效率降低。Sde2 促进 Cactin/Cay1 与剪接体的结合,Sde2 和 Cactin 之间的功能联系进一步得到遗传相互作用和前体 mRNA 剪接分析的支持。这些发现表明,Sde2 被泛素样加工成半衰期短的活性形式可能作为一个检查点,以确保裂殖酵母中某些前体 mRNA 的正确剪接。

相似文献

1
Sde2 is an intron-specific pre-mRNA splicing regulator activated by ubiquitin-like processing.
EMBO J. 2018 Jan 4;37(1):89-101. doi: 10.15252/embj.201796751. Epub 2017 Sep 25.
2
Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2.
Nucleic Acids Res. 2022 Sep 23;50(17):10000-10014. doi: 10.1093/nar/gkac769.
3
Intron specificity in pre-mRNA splicing.
Curr Genet. 2018 Aug;64(4):777-784. doi: 10.1007/s00294-017-0802-8. Epub 2018 Jan 3.
4
The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression.
J Biol Chem. 2016 Dec 30;291(53):27387-27402. doi: 10.1074/jbc.M116.751289. Epub 2016 Nov 15.
5
Mutant allele of rna14 in fission yeast affects pre-mRNA splicing.
J Genet. 2016 Jun;95(2):389-97. doi: 10.1007/s12041-016-0652-z.
7
Pre-mRNA splicing in Schizosaccharomyces pombe: regulatory role of a kinase conserved from fission yeast to mammals.
Curr Genet. 2003 Feb;42(5):241-51. doi: 10.1007/s00294-002-0355-2. Epub 2002 Dec 13.
8
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF.
Mol Cell Biol. 2011 Feb;31(4):652-61. doi: 10.1128/MCB.01000-10. Epub 2010 Dec 13.
9
All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6584-6589. doi: 10.1073/pnas.1802963115. Epub 2018 Jun 11.
10
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly.
Mol Cell Biol. 2013 Aug;33(16):3125-36. doi: 10.1128/MCB.00007-13. Epub 2013 Jun 10.

引用本文的文献

1
Light controls gene functions through alternative splicing in fungi.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2500966122. doi: 10.1073/pnas.2500966122. Epub 2025 Jun 27.
2
OTULIN Interactome Reveals Immune Response and Autophagy Associated with Tauopathy in a Mouse Model.
bioRxiv. 2025 Feb 8:2025.02.07.636114. doi: 10.1101/2025.02.07.636114.
5
Preventing too much of a good thing: epigenetic regulation limits sucrose-induced anthocyanin production in Arabidopsis.
New Phytol. 2024 Aug;243(4):1287-1289. doi: 10.1111/nph.19854. Epub 2024 May 21.
7
DEGRONOPEDIA: a web server for proteome-wide inspection of degrons.
Nucleic Acids Res. 2024 Jul 5;52(W1):W221-W232. doi: 10.1093/nar/gkae238.
9
Convergent genomic signatures associated with vertebrate viviparity.
BMC Biol. 2024 Feb 8;22(1):34. doi: 10.1186/s12915-024-01837-w.
10
Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2.
Nucleic Acids Res. 2022 Sep 23;50(17):10000-10014. doi: 10.1093/nar/gkac769.

本文引用的文献

1
Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion.
J Cell Sci. 2017 Feb 15;130(4):767-778. doi: 10.1242/jcs.194068. Epub 2017 Jan 6.
2
PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress.
PLoS Genet. 2016 Dec 1;12(12):e1006465. doi: 10.1371/journal.pgen.1006465. eCollection 2016 Dec.
3
The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression.
J Biol Chem. 2016 Dec 30;291(53):27387-27402. doi: 10.1074/jbc.M116.751289. Epub 2016 Nov 15.
4
The I-TASSER Suite: protein structure and function prediction.
Nat Methods. 2015 Jan;12(1):7-8. doi: 10.1038/nmeth.3213.
5
Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels.
EMBO J. 2015 Jan 2;34(1):115-29. doi: 10.15252/embj.201489559. Epub 2014 Nov 14.
6
Intron evolution in Saccharomycetaceae.
Genome Biol Evol. 2014 Sep;6(9):2543-56. doi: 10.1093/gbe/evu196.
8
Tls1 regulates splicing of shelterin components to control telomeric heterochromatin assembly and telomere length.
Nucleic Acids Res. 2014 Oct;42(18):11419-32. doi: 10.1093/nar/gku842. Epub 2014 Sep 22.
9
Proteomic analysis reveals CACN-1 is a component of the spliceosome in Caenorhabditis elegans.
G3 (Bethesda). 2014 Jun 19;4(8):1555-64. doi: 10.1534/g3.114.012013.
10
The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast.
PLoS Genet. 2014 May 29;10(5):e1004334. doi: 10.1371/journal.pgen.1004334. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验