Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
Department of Bioengineering, University of California, Riverside, CA 92507.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6584-6589. doi: 10.1073/pnas.1802963115. Epub 2018 Jun 11.
The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near-atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils () the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and () the critical participation of the Cwf19 protein in displacing the intron lariat/U2 branch helix. These findings provide unprecedented details on the SPL functional dynamics, thus contributing to move a step forward toward a thorough understanding of eukaryotic pre-mRNA splicing.
剪接体(SPL)是一种由五个小核 RNA 和数百种蛋白质组成的宏伟的大分子机器。SPL 从前体信使 RNA(pre-mRNA)中去除非编码内含子,并连接编码外显子,从而产生功能性 mRNA。在首次解决接近原子分辨率的 SPL 结构的基础上,我们通过对约 100 万个原子模型进行多微秒长的分子动力学模拟,阐明了内含子套索剪接体(ILS)复合物的功能动力学。ILS 基本动力学揭示了()Spp42 蛋白的主导作用,该蛋白通过调节不同 SPL 成分的运动来主导基因成熟,以及()Cwf19 蛋白在置换内含子套索/U2 分支螺旋方面的关键参与。这些发现提供了 SPL 功能动力学的前所未有的细节,从而有助于朝着全面理解真核 pre-mRNA 剪接迈出一步。