Suppr超能文献

全原子模拟解析了内含子套索剪接体中基因成熟的功能动力学。

All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome.

机构信息

Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), 34136 Trieste, Italy.

Department of Bioengineering, University of California, Riverside, CA 92507.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6584-6589. doi: 10.1073/pnas.1802963115. Epub 2018 Jun 11.

Abstract

The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near-atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils () the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and () the critical participation of the Cwf19 protein in displacing the intron lariat/U2 branch helix. These findings provide unprecedented details on the SPL functional dynamics, thus contributing to move a step forward toward a thorough understanding of eukaryotic pre-mRNA splicing.

摘要

剪接体(SPL)是一种由五个小核 RNA 和数百种蛋白质组成的宏伟的大分子机器。SPL 从前体信使 RNA(pre-mRNA)中去除非编码内含子,并连接编码外显子,从而产生功能性 mRNA。在首次解决接近原子分辨率的 SPL 结构的基础上,我们通过对约 100 万个原子模型进行多微秒长的分子动力学模拟,阐明了内含子套索剪接体(ILS)复合物的功能动力学。ILS 基本动力学揭示了()Spp42 蛋白的主导作用,该蛋白通过调节不同 SPL 成分的运动来主导基因成熟,以及()Cwf19 蛋白在置换内含子套索/U2 分支螺旋方面的关键参与。这些发现提供了 SPL 功能动力学的前所未有的细节,从而有助于朝着全面理解真核 pre-mRNA 剪接迈出一步。

相似文献

2
Structure of a yeast spliceosome at 3.6-angstrom resolution.酵母剪接体的 3.6 埃分辨率结构。
Science. 2015 Sep 11;349(6253):1182-91. doi: 10.1126/science.aac7629. Epub 2015 Aug 20.
4
Structural basis of pre-mRNA splicing.前体 mRNA 剪接的结构基础。
Science. 2015 Sep 11;349(6253):1191-8. doi: 10.1126/science.aac8159. Epub 2015 Aug 20.
6
Molecular choreography of pre-mRNA splicing by the spliceosome.剪接体介导的前体 mRNA 剪接的分子舞蹈。
Curr Opin Struct Biol. 2019 Dec;59:124-133. doi: 10.1016/j.sbi.2019.07.010. Epub 2019 Aug 30.

引用本文的文献

7
RNA-protein complexes and force field polarizability.RNA-蛋白质复合物与力场极化率
Front Chem. 2023 Jun 22;11:1217506. doi: 10.3389/fchem.2023.1217506. eCollection 2023.
9
Machines on Genes through the Computational Microscope.通过计算显微镜对基因进行机器操作。
J Chem Theory Comput. 2023 Apr 11;19(7):1945-1964. doi: 10.1021/acs.jctc.2c01313. Epub 2023 Mar 22.

本文引用的文献

3
Mechanistic insights into precursor messenger RNA splicing by the spliceosome.剪接体对前体信使 RNA 剪接的机制见解。
Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670. doi: 10.1038/nrm.2017.86. Epub 2017 Sep 27.
4
Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae.酿酒酵母内含子套索剪接体的结构。
Cell. 2017 Sep 21;171(1):120-132.e12. doi: 10.1016/j.cell.2017.08.029. Epub 2017 Sep 14.
5
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.间隔基序邻近基序诱导的变构激活 CRISPR-Cas9。
J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.
6
The Spliceosome: A Protein-Directed Metalloribozyme.剪接体:一种蛋白指导的金属核酶。
J Mol Biol. 2017 Aug 18;429(17):2640-2653. doi: 10.1016/j.jmb.2017.07.010. Epub 2017 Jul 19.
7
An Atomic Structure of the Human Spliceosome.人类剪接体的原子结构。
Cell. 2017 May 18;169(5):918-929.e14. doi: 10.1016/j.cell.2017.04.033. Epub 2017 May 11.
9
Structure of a spliceosome remodelled for exon ligation.为外显子连接而重塑的剪接体结构。
Nature. 2017 Feb 16;542(7641):377-380. doi: 10.1038/nature21078. Epub 2017 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验