Department of Chemistry, Jinan University, Guangzhou, People's Republic of China.
The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01288-17. Print 2017 Dec.
Bacterial β-lactamases readily inactivate most penicillins and cephalosporins by hydrolyzing and "opening" their signature β-lactam ring. In contrast, carbapenems resist hydrolysis by many serine-based class A, C, and D β-lactamases due to their unique stereochemical features. To improve the resistance profile of penicillins, we synthesized a modified penicillin molecule, MPC-1, by "grafting" carbapenem-like stereochemistry onto the penicillin core. Chemical modifications include the conformation of hydrogen atoms at C-5 and C-6 instead of , and a 6-α hydroxyethyl moiety to replace the original 6-β aminoacyl group. MPC-1 selectively inhibits class C β-lactamases, such as P99, by forming a nonhydrolyzable acyl adduct, and its inhibitory potency is ∼2 to 5 times higher than that for clinically used β-lactamase inhibitors clavulanate and sulbactam. The crystal structure of MPC-1 forming the acyl adduct with P99 reveals a novel binding mode for MPC-1 that resembles carbapenem bound in the active site of class A β-lactamases. Furthermore, in this novel binding mode, the carboxyl group of MPC-1 blocks the deacylation reaction by occluding the critical catalytic water molecule and renders the acyl adduct nonhydrolyzable. Our results suggest that by incorporating carbapenem-like stereochemistry, the current collection of over 100 penicillins and cephalosporins can be modified into candidate compounds for development of novel β-lactamase inhibitors.
细菌β-内酰胺酶通过水解和“打开”其特征性β-内酰胺环,很容易使大多数青霉素和头孢菌素失活。相比之下,由于其独特的立体化学特征,碳青霉烯类抗生素抵抗许多基于丝氨酸的 A、C 和 D 类β-内酰胺酶的水解。为了提高青霉素的耐药性,我们通过将碳青霉烯类立体化学“嫁接”到青霉素核心上,合成了一种修饰的青霉素分子 MPC-1。化学修饰包括 C-5 和 C-6 处的氢原子构象而不是 ,以及 6-α 羟乙基取代原来的 6-β 氨酰基。MPC-1 通过形成不可水解的酰基加合物选择性抑制 C 类β-内酰胺酶,如 P99,其抑制效力比临床上使用的β-内酰胺酶抑制剂克拉维酸和舒巴坦高 2 到 5 倍。MPC-1 与 P99 形成酰基加合物的晶体结构揭示了 MPC-1 的一种新的结合模式,类似于结合在 A 类β-内酰胺酶活性部位的碳青霉烯。此外,在这种新的结合模式中,MPC-1 的羧基通过阻塞关键的催化水分子来阻止去酰化反应,使酰基加合物不可水解。我们的结果表明,通过引入碳青霉烯类立体化学,可以将目前超过 100 种青霉素和头孢菌素修饰成新型β-内酰胺酶抑制剂的候选化合物。