Suppr超能文献

气候变化下全球开放式海水养殖中鱼类的生长情况。

The growth of finfish in global open-ocean aquaculture under climate change.

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, USA

Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, USA.

出版信息

Proc Biol Sci. 2017 Oct 11;284(1864). doi: 10.1098/rspb.2017.0834.

Abstract

Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon (), gilthead seabream () and cobia ()-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.

摘要

水产养殖的生产预计将从陆基作业扩展到公海,因为对海鲜的需求不断增长,而对陆基水产养殖(如淡水和适宜土地)的投入的竞争也在加剧。与陆基生产不同,公海水产养殖受到海洋因素的限制,例如海流速度和海水温度,这些因素在时间和空间上是动态的,不容易控制。因此,近海水产养殖增加海鲜产量的潜力与海洋的物理状态有关。我们采用一种新的空间模型,根据物理、生物和技术限制,估算全球公海养殖鱼类的潜力。基于高分辨率全球气候模型的输出,比较了三种具有不同热群的常见养殖鱼类(大西洋三文鱼、)、金头鲷和军曹鱼)的生长潜力,跨越了物种和地区,并考虑了气候变化的影响。在全球范围内,有足够的区域在物理上适合鱼类生长和新兴水产养殖产业的潜在扩张。气候变化对不同物种和地区的影响是不均匀的,但现有的水产养殖区可能会看到增长率的提高。在气候变化导致增长率降低的地区,可以采取适应性措施,如选择性繁殖,可能会抵消潜在的产量损失。

相似文献

1
The growth of finfish in global open-ocean aquaculture under climate change.
Proc Biol Sci. 2017 Oct 11;284(1864). doi: 10.1098/rspb.2017.0834.
4
Global change in marine aquaculture production potential under climate change.
Nat Ecol Evol. 2018 Nov;2(11):1745-1750. doi: 10.1038/s41559-018-0669-1. Epub 2018 Sep 10.
8
BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.
J Anim Sci. 2017 Apr;95(4):1801-1812. doi: 10.2527/jas.2016.1066.
9
Global estimation of areas with suitable environmental conditions for mariculture species.
PLoS One. 2018 Jan 19;13(1):e0191086. doi: 10.1371/journal.pone.0191086. eCollection 2018.
10
Climate change does not affect the seafood quality of a commonly targeted fish.
Glob Chang Biol. 2019 Feb;25(2):699-707. doi: 10.1111/gcb.14513. Epub 2018 Dec 12.

引用本文的文献

2
Mapping the potential for global offshore finfish mariculture.
Mar Life Sci Technol. 2024 Nov 6;6(4):651-664. doi: 10.1007/s42995-024-00257-7. eCollection 2024 Nov.
3
A review: Marine aquaculture impacts marine microbial communities.
AIMS Microbiol. 2024 Mar 19;10(2):239-254. doi: 10.3934/microbiol.2024012. eCollection 2024.
4
Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea.
Mar Life Sci Technol. 2022 Aug 18;4(3):329-342. doi: 10.1007/s42995-022-00141-2. eCollection 2022 Aug.
5
Impacts of climate change on fish hatchery productivity in Bangladesh: A critical review.
Heliyon. 2022 Nov 28;8(12):e11951. doi: 10.1016/j.heliyon.2022.e11951. eCollection 2022 Dec.
6
Metabolic scope, performance and tolerance of juvenile European sea bass Dicentrarchus labrax upon acclimation to high temperatures.
PLoS One. 2022 Aug 12;17(8):e0272510. doi: 10.1371/journal.pone.0272510. eCollection 2022.
7
A global and regional view of the opportunity for climate-smart mariculture.
Philos Trans R Soc Lond B Biol Sci. 2022 Jul 4;377(1854):20210128. doi: 10.1098/rstb.2021.0128. Epub 2022 May 16.
8
Expanding ocean food production under climate change.
Nature. 2022 May;605(7910):490-496. doi: 10.1038/s41586-022-04674-5. Epub 2022 Apr 27.
9
Strategies for managing marine disease.
Ecol Appl. 2022 Oct;32(7):e2643. doi: 10.1002/eap.2643. Epub 2022 Jul 21.
10
Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ().
Front Immunol. 2022 Mar 28;13:806484. doi: 10.3389/fimmu.2022.806484. eCollection 2022.

本文引用的文献

1
Offshore aquaculture: Spatial planning principles for sustainable development.
Ecol Evol. 2016 Dec 24;7(2):733-743. doi: 10.1002/ece3.2637. eCollection 2017 Jan.
2
Improving marine disease surveillance through sea temperature monitoring, outlooks and projections.
Philos Trans R Soc Lond B Biol Sci. 2016 Mar 5;371(1689). doi: 10.1098/rstb.2015.0208.
3
Fishing, fast growth and climate variability increase the risk of collapse.
Proc Biol Sci. 2015 Aug 22;282(1813):20151053. doi: 10.1098/rspb.2015.1053.
5
Infectious diseases affect marine fisheries and aquaculture economics.
Ann Rev Mar Sci. 2015;7:471-96. doi: 10.1146/annurev-marine-010814-015646. Epub 2014 Sep 12.
7
Signature of ocean warming in global fisheries catch.
Nature. 2013 May 16;497(7449):365-8. doi: 10.1038/nature12156.
8
Selective breeding in fish and conservation of genetic resources for aquaculture.
Reprod Domest Anim. 2012 Aug;47 Suppl 4:255-63. doi: 10.1111/j.1439-0531.2012.02084.x.
9
The impact and control of biofouling in marine aquaculture: a review.
Biofouling. 2012;28(7):649-69. doi: 10.1080/08927014.2012.700478.
10
Systematic variation in the temperature dependence of physiological and ecological traits.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10591-6. doi: 10.1073/pnas.1015178108. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验