Suppr超能文献

使用开源软件对磨玻璃密度结节进行计算机辅助诊断以量化肿瘤异质性

Computer-Aided Diagnosis of Ground-Glass Opacity Nodules Using Open-Source Software for Quantifying Tumor Heterogeneity.

作者信息

Li Ming, Narayan Vivek, Gill Ritu R, Jagannathan Jyothi P, Barile Maria F, Gao Feng, Bueno Raphael, Jayender Jagadeesan

机构信息

1 Department of Radiology, HuaDong Hospital, Fudan University, Shanghai, China.

2 Dana Farber Cancer Institute, Boston, MA.

出版信息

AJR Am J Roentgenol. 2017 Dec;209(6):1216-1227. doi: 10.2214/AJR.17.17857. Epub 2017 Oct 18.

Abstract

OBJECTIVE

The purposes of this study are to develop quantitative imaging biomarkers obtained from high-resolution CTs for classifying ground-glass nodules (GGNs) into atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC); to evaluate the utility of contrast enhancement for differential diagnosis; and to develop and validate a support vector machine (SVM) to predict the GGN type.

MATERIALS AND METHODS

The heterogeneity of 248 GGNs was quantified using custom software. Statistical analysis with a univariate Kruskal-Wallis test was performed to evaluate metrics for significant differences among the four GGN groups. The heterogeneity metrics were used to train a SVM to learn and predict the lesion type.

RESULTS

Fifty of 57 and 51 of 57 heterogeneity metrics showed statistically significant differences among the four GGN groups on unenhanced and contrast-enhanced CT scans, respectively. The SVM predicted lesion type with greater accuracy than did three expert radiologists. The accuracy of classifying the GGNs into the four groups on the basis of the SVM algorithm was 70.9%, whereas the accuracy of the radiologists was 39.6%. The accuracy of SVM in classifying the AIS and MIA nodules was 73.1%, and the accuracy of the radiologists was 35.7%. For indolent versus invasive lesions, the accuracy of the SVM was 88.1%, and the accuracy of the radiologists was 60.8%. We found that contrast enhancement does not significantly improve the differential diagnosis of GGNs.

CONCLUSION

Compared with the GGN classification done by the three radiologists, the SVM trained regarding all the heterogeneity metrics showed significantly higher accuracy in classifying the lesions into the four groups, differentiating between AIS and MIA and between indolent and invasive lesions. Contrast enhancement did not improve the differential diagnosis of GGNs.

摘要

目的

本研究的目的是开发从高分辨率CT获得的定量成像生物标志物,用于将磨玻璃结节(GGN)分类为非典型腺瘤样增生(AAH)、原位腺癌(AIS)、微浸润腺癌(MIA)和浸润性腺癌(IAC);评估对比增强在鉴别诊断中的效用;并开发和验证支持向量机(SVM)以预测GGN类型。

材料与方法

使用定制软件对248个GGN的异质性进行量化。采用单因素Kruskal-Wallis检验进行统计分析,以评估四个GGN组之间指标的显著差异。异质性指标用于训练SVM以学习和预测病变类型。

结果

在平扫和增强CT扫描上,分别有57个异质性指标中的50个和51个在四个GGN组之间显示出统计学显著差异。SVM预测病变类型的准确性高于三位放射科专家。基于SVM算法将GGN分为四组的准确性为70.9%,而放射科专家的准确性为39.6%。SVM对AIS和MIA结节分类的准确性为73.1%,放射科专家的准确性为35.7%。对于惰性病变与浸润性病变,SVM的准确性为88.1%,放射科专家的准确性为60.8%。我们发现对比增强并不能显著改善GGN的鉴别诊断。

结论

与三位放射科医生进行的GGN分类相比,基于所有异质性指标训练的SVM在将病变分为四组、区分AIS和MIA以及区分惰性和浸润性病变方面显示出显著更高的准确性。对比增强并未改善GGN的鉴别诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51b/5718185/34f55f8e50ba/nihms922051f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验