Suppr超能文献

工程化核酸结构用于可编程分子电路和细胞内生物计算。

Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation.

机构信息

Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Nat Chem. 2017 Nov;9(11):1056-1067. doi: 10.1038/nchem.2852. Epub 2017 Sep 25.

Abstract

Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.

摘要

由于核酸可以被设计成形成离散结构,并在纳米尺度上编程执行特定功能,因此它们引起了广泛的关注。DNA/RNA 纳米技术的优势为细胞内和体内的应用提供了众多机会,并且该技术有望推进日益发展的合成生物学领域。许多精美的例子揭示了将核酸纳米结构整合到细胞内和体内以发挥重要生理功能的潜力。在这篇综述中,我们总结了 DNA/RNA 纳米技术在活细胞中实现应用的现有能力,然后讨论了充分利用纳米结构有用特性必须解决的关键问题。最后,我们就如何整合 DNA/RNA 纳米技术和相关新技术提供的工具来构建基于核酸纳米结构的合成生物学分子电路提出了观点。

相似文献

2
Nucleic Acid Engineering: RNA Following the Trail of DNA.核酸工程:RNA追寻DNA的踪迹。
ACS Comb Sci. 2016 Feb 8;18(2):87-99. doi: 10.1021/acscombsci.5b00108. Epub 2016 Jan 20.
6
Concept and Development of Framework Nucleic Acids.框架核酸的概念与发展。
J Am Chem Soc. 2018 Dec 26;140(51):17808-17819. doi: 10.1021/jacs.8b10529. Epub 2018 Dec 14.
10
RNA self-assembly and RNA nanotechnology.RNA 自组装和 RNA 纳米技术。
Acc Chem Res. 2014 Jun 17;47(6):1871-80. doi: 10.1021/ar500076k. Epub 2014 May 23.

引用本文的文献

3
Implementing complex nucleic acid circuits in living cells.在活细胞中实现复杂核酸电路
Sci Adv. 2025 May 2;11(18):eadv6512. doi: 10.1126/sciadv.adv6512. Epub 2025 Apr 30.
6
High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register.使用固态DNA折纸寄存器的高速序列DNA计算
ACS Cent Sci. 2024 Dec 11;10(12):2285-2293. doi: 10.1021/acscentsci.4c01557. eCollection 2024 Dec 25.

本文引用的文献

4
An Epigenetics-Inspired DNA-Based Data Storage System.基于 DNA 的受启发于表观遗传学的数据存储系统。
Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11144-8. doi: 10.1002/anie.201605531. Epub 2016 Jul 21.
5
Analog Computation by DNA Strand Displacement Circuits.基于DNA链置换电路的模拟计算
ACS Synth Biol. 2016 Aug 19;5(8):898-912. doi: 10.1021/acssynbio.6b00144. Epub 2016 Jul 22.
7
Genetic circuit design automation.遗传电路设计自动化。
Science. 2016 Apr 1;352(6281):aac7341. doi: 10.1126/science.aac7341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验