The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543;
The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9105-E9114. doi: 10.1073/pnas.1711596114. Epub 2017 Oct 9.
Knowledge of the spatial organization of the gut microbiota is important for understanding the physical and molecular interactions among its members. These interactions are thought to influence microbial succession, community stability, syntrophic relationships, and resiliency in the face of perturbations. The complexity and dynamism of the gut microbiota pose considerable challenges for quantitative analysis of its spatial organization. Here, we illustrate an approach for addressing this challenge, using () a model, defined 15-member consortium of phylogenetically diverse, sequenced human gut bacterial strains introduced into adult gnotobiotic mice fed a polysaccharide-rich diet, and () in situ hybridization and spectral imaging analysis methods that allow simultaneous detection of multiple bacterial strains at multiple spatial scales. Differences in the binding affinities of strains for substrates such as mucus or food particles, combined with more rapid replication in a preferred microhabitat, could, in principle, lead to localized clonally expanded aggregates composed of one or a few taxa. However, our results reveal a colonic community that is mixed at micrometer scales, with distinct spatial distributions of some taxa relative to one another, notably at the border between the mucosa and the lumen. Our data suggest that lumen and mucosa in the proximal colon should be conceptualized not as stratified compartments but as components of an incompletely mixed bioreactor. Employing the experimental approaches described should allow direct tests of whether and how specified host and microbial factors influence the nature and functional contributions of "microscale" mixing to the dynamic operations of the microbiota in health and disease.
肠道微生物组的空间组织知识对于理解其成员之间的物理和分子相互作用非常重要。这些相互作用被认为会影响微生物的演替、群落的稳定性、共生关系以及在受到干扰时的恢复能力。肠道微生物组的复杂性和动态性给其空间组织的定量分析带来了相当大的挑战。在这里,我们使用一个模型,展示了一种解决这一挑战的方法,该模型由 15 种具有不同系统发育的、经过测序的人类肠道细菌菌株组成,这些菌株被引入到喂食富含多糖的饮食的成年无菌小鼠中,以及原位杂交和光谱成像分析方法,这些方法允许在多个空间尺度上同时检测多种细菌菌株。菌株对底物(如黏液或食物颗粒)的结合亲和力的差异,加上在首选微生境中更快的复制,原则上可能导致由一个或几个分类群组成的局部克隆扩展聚集。然而,我们的结果揭示了一个在微米尺度上混合的结肠群落,与彼此相比,一些分类群具有明显的空间分布,特别是在黏膜和腔之间的边界处。我们的数据表明,近端结肠的腔和黏膜不应该被视为分层的隔室,而应该被视为一个不完全混合的生物反应器的组成部分。采用所描述的实验方法应该可以直接测试特定的宿主和微生物因素是否以及如何影响“微观”混合对微生物组在健康和疾病中的动态运作的性质和功能贡献。