Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
Mol Brain. 2017 Oct 30;10(1):50. doi: 10.1186/s13041-017-0330-y.
Alterations in the strength of excitatory synapses in the hippocampus is believed to serve a vital function in the storage and recall of new information in the mammalian brain. These alterations involve the regulation of both functional and morphological features of dendritic spines, the principal sites of excitatory synaptic contact. New protein synthesis has been implicated extensively in the functional changes observed following long-term potentiation (LTP), and changes to spine morphology have similarly been documented extensively following synaptic potentiation. However, mechanistic links between de novo translation and the structural changes of potentiated spines are less clear. Here, we assess explicitly the potential contribution of new protein translation under control of the mechanistic target of rapamycin (mTOR) to LTP-associated changes in spine morphology. Utilizing genetic and pharmacological manipulations of mTORC1 function in combination with confocal microscopy in live dissociated hippocampal cultures, we demonstrate that chemically-induced LTP (cLTP) requires do novo protein synthesis and intact mTORC1 signaling. We observed a striking diversity in response properties across morphological classes, with mushroom spines displaying a particular sensitivity to altered mTORC1 signaling across varied levels of synaptic activity. Notably, while pharmacological inhibition of mTORC1 signaling significantly diminished glycine-induced changes in spine morphology, transient genetic upregulation of mTORC1 signaling was insufficient to produce spine enlargements on its own. In contrast, genetic upregulation of mTORC1 signaling promoted rapid expansion in spine head diameter when combined with otherwise sub-threshold synaptic stimulation. These results suggest that synaptic activity-derived signaling pathways act in combination with mTORC1-dependent translational control mechanisms to ultimately regulate changes in spine morphology. As several monogenic neurodevelopmental disorders with links to Autism and Intellectual Disability share a common feature of dysregulated mTORC1 signaling, further understanding of the role of this signaling pathway in regulating synapse function and morphology will be essential in the development of novel therapeutic interventions.
海马体中兴奋性突触强度的改变被认为在哺乳动物大脑中新信息的存储和回忆中起着至关重要的作用。这些改变涉及树突棘的功能和形态特征的调节,树突棘是兴奋性突触接触的主要部位。新的蛋白质合成已广泛涉及长时程增强(LTP)后观察到的功能变化,并且突触增强后同样广泛记录到了棘形态的变化。然而,新合成的蛋白质与增强的棘突形态变化之间的机制联系尚不清楚。在这里,我们明确评估了在雷帕霉素(mTOR)的机械靶标控制下新蛋白质翻译对 LTP 相关棘突形态变化的潜在贡献。利用 mTORC1 功能的遗传和药理学操作,结合活分离海马培养物中的共焦显微镜,我们证明化学诱导的 LTP(cLTP)需要新的蛋白质合成和完整的 mTORC1 信号。我们观察到形态学类别之间的反应特性存在显著差异,蘑菇状棘突对不同水平的突触活动中改变的 mTORC1 信号表现出特别的敏感性。值得注意的是,虽然 mTORC1 信号的药理学抑制显著降低了甘氨酸诱导的棘突形态变化,但 mTORC1 信号的瞬时遗传上调本身不足以产生棘突增大。相比之下,当与其他亚阈值突触刺激结合时,mTORC1 信号的遗传上调促进了棘突头部直径的快速扩张。这些结果表明,突触活动衍生的信号通路与 mTORC1 依赖性翻译控制机制相结合,最终调节棘突形态的变化。由于几种与自闭症和智力残疾相关的单基因神经发育障碍具有 mTORC1 信号失调的共同特征,因此进一步了解该信号通路在调节突触功能和形态中的作用对于开发新的治疗干预措施至关重要。