Neuroscience Graduate Program.
Molecular and behavioral Neuroscience Institute, and.
J Neurosci. 2018 Feb 28;38(9):2207-2225. doi: 10.1523/JNEUROSCI.1843-17.2017. Epub 2018 Jan 8.
mTORC1-dependent translational control plays a key role in several enduring forms of synaptic plasticity such as long term potentiation (LTP) and mGluR-dependent long term depression. Recent evidence demonstrates an additional role in regulating synaptic homeostasis in response to inactivity, where dendritic mTORC1 serves to modulate presynaptic function via retrograde signaling. Presently, it is unclear whether LTP and homeostatic plasticity use a common route to mTORC1-dependent signaling or whether each engage mTORC1 through distinct pathways. Here, we report a unique signaling pathway that specifically couples homeostatic signaling to postsynaptic mTORC1 after loss of excitatory synaptic input. We find that AMPAR blockade, but not LTP-inducing stimulation, induces phospholipase D (PLD)-dependent synthesis of the lipid second messenger phosphatidic acid (PA) in rat cultured hippocampal neurons of either sex. Pharmacological blockade of PLD1/2 or pharmacogenetic disruption of PA interactions with mTOR eliminates mTORC1 signaling and presynaptic compensation driven by AMPAR blockade, but does not alter mTORC1 activation or functional changes during chemical LTP (cLTP). Overexpression of PLD1, but not PLD2, recapitulates both functional synaptic changes as well as signature cellular adaptations associated with homeostatic plasticity. Finally, transient application of exogenous PA is sufficient to drive rapid presynaptic compensation requiring mTORC1-dependent translation of BDNF in the postsynaptic compartment. These results thus define a unique homeostatic signaling pathway coupling mTORC1 activation to changes in excitatory synaptic drive. Our results further imply that more than one canonical mTORC1 activation pathway may be relevant for the design of novel therapeutic approaches against neurodevelopmental disorders associated with mTORC1 dysregulation. Homeostatic and Hebbian forms of synaptic plasticity are thought to play complementary roles in regulating neural circuit function, but we know little about how these forms of plasticity are distinguished at the single neuron level. Here, we define a signaling pathway that uniquely links mTORC1 with homeostatic signaling in neurons.
mTORC1 依赖性翻译控制在几种持久形式的突触可塑性中发挥关键作用,如长时程增强(LTP)和 mGluR 依赖性长时程抑制。最近的证据表明,它在调节不活动时的突触稳态方面发挥了额外的作用,其中树突状 mTORC1 通过逆行信号调节突触前功能。目前,尚不清楚 LTP 和稳态可塑性是否使用共同途径来进行 mTORC1 依赖性信号转导,或者每个途径是否通过不同的途径来激活 mTORC1。在这里,我们报告了一种独特的信号通路,该通路专门将稳态信号与兴奋性突触输入丧失后突触后的 mTORC1 偶联。我们发现,在雄性和雌性大鼠培养的海马神经元中,AMPAR 阻断而非诱导 LTP 的刺激会诱导磷脂酶 D(PLD)依赖性合成脂质第二信使磷脂酸(PA)。药理学阻断 PLD1/2 或药理学破坏 PA 与 mTOR 的相互作用会消除由 AMPAR 阻断引起的 mTORC1 信号和突触前代偿,但不会改变化学 LTP(cLTP)期间的 mTORC1 激活或功能变化。过表达 PLD1,但不是 PLD2,可再现与稳态可塑性相关的功能突触变化和特征性细胞适应。最后,外源性 PA 的短暂应用足以驱动需要 mTORC1 依赖性翻译 BDNF 的快速突触前代偿,该过程发生在突触后区。因此,这些结果定义了一种独特的稳态信号通路,将 mTORC1 激活与兴奋性突触驱动的变化偶联起来。我们的结果进一步表明,可能有不止一种经典的 mTORC1 激活途径与针对与 mTORC1 失调相关的神经发育障碍的新型治疗方法的设计有关。稳态和赫布形式的突触可塑性被认为在调节神经回路功能方面发挥互补作用,但我们对这些形式的可塑性在单个神经元水平上如何区分知之甚少。在这里,我们定义了一种信号通路,该通路将 mTORC1 与神经元中的稳态信号独特地联系起来。