Suppr超能文献

静水压力下单层MoS导带中的K-Λ交叉跃迁

K-Λ crossover transition in the conduction band of monolayer MoS under hydrostatic pressure.

作者信息

Fu Lei, Wan Yi, Tang Ning, Ding Yi-Min, Gao Jing, Yu Jiachen, Guan Hongming, Zhang Kun, Wang Weiying, Zhang Caifeng, Shi Jun-Jie, Wu Xiang, Shi Su-Fei, Ge Weikun, Dai Lun, Shen Bo

机构信息

State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.

出版信息

Sci Adv. 2017 Nov 3;3(11):e1700162. doi: 10.1126/sciadv.1700162. eCollection 2017 Nov.

Abstract

Monolayer MoS is a promising material for optoelectronics applications owing to its direct bandgap, enhanced Coulomb interaction, strong spin-orbit coupling, unique valley pseudospin degree of freedom, etc. It can also be implemented for novel spintronics and valleytronics devices at atomic scale. The band structure of monolayer MoS is well known to have a direct gap at K (K') point, whereas the second lowest conduction band minimum is located at Λ point, which may interact with the valence band maximum at K point, to make an indirect optical bandgap transition. We experimentally demonstrate the direct-to-indirect bandgap transition by measuring the photoluminescence spectra of monolayer MoS under hydrostatic pressure at room temperature. With increasing pressure, the direct transition shifts at a rate of 49.4 meV/GPa, whereas the indirect transition shifts at a rate of -15.3 meV/GPa. We experimentally extract the critical transition point at the pressure of 1.9 GPa, in agreement with first-principles calculations. Combining our experimental observation with first-principles calculations, we confirm that this transition is caused by the K-Λ crossover in the conduction band.

摘要

单层二硫化钼因其直接带隙、增强的库仑相互作用、强自旋轨道耦合、独特的谷赝自旋自由度等,是一种很有前景的用于光电子应用的材料。它还可以在原子尺度上用于新型自旋电子学和谷电子学器件。众所周知,单层二硫化钼的能带结构在K(K')点有直接带隙,而第二低的导带最小值位于Λ点,它可能与K点的价带最大值相互作用,从而产生间接光学带隙跃迁。我们通过在室温下测量静水压力下单层二硫化钼的光致发光光谱,实验证明了直接到间接的带隙跃迁。随着压力增加,直接跃迁以49.4 meV/GPa的速率移动,而间接跃迁以-15.3 meV/GPa的速率移动。我们通过实验提取了1.9 GPa压力下的临界转变点,这与第一性原理计算结果一致。将我们的实验观察结果与第一性原理计算相结合,我们证实这种跃迁是由导带中的K-Λ交叉引起的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f95/5669610/6808b27749d5/1700162-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验