Suppr超能文献

嵌入式多材料挤出生物打印

Embedded Multimaterial Extrusion Bioprinting.

作者信息

Rocca Marco, Fragasso Alessio, Liu Wanjun, Heinrich Marcel A, Zhang Yu Shrike

机构信息

1 Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.

2 Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.

出版信息

SLAS Technol. 2018 Apr;23(2):154-163. doi: 10.1177/2472630317742071. Epub 2017 Nov 13.

Abstract

Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

摘要

嵌入式挤出生物打印能够生成复杂结构,通过克服重力带来的限制,这些结构是无法通过传统的从底部逐层沉积方式实现的。利用水凝胶浴作为牺牲性打印环境,可以自由形式挤出生物墨水,直到整个结构沉积并交联。随后,生物打印的结构可以从支撑水凝胶中释放出来并用于进一步的应用。将这种先进的三维(3D)生物打印技术与多材料挤出打印头设置相结合,能够制造由多种生物墨水构建的复杂体积结构。本文所述工作聚焦于实验设置的优化,并提出了一种使生物打印过程自动化的工作流程,从而使用多材料嵌入式生物打印系统将虚拟3D模型快速高效地转换为自由形式的物理挤出结构。预计该技术的进一步发展可能会在组织工程、药物测试和芯片器官等领域得到广泛应用。

相似文献

1
Embedded Multimaterial Extrusion Bioprinting.嵌入式多材料挤出生物打印
SLAS Technol. 2018 Apr;23(2):154-163. doi: 10.1177/2472630317742071. Epub 2017 Nov 13.
7
3D Bioprinting: from Benches to Translational Applications.3D 生物打印:从实验台走向临床应用。
Small. 2019 Jun;15(23):e1805510. doi: 10.1002/smll.201805510. Epub 2019 Apr 29.

引用本文的文献

8
Multiscale embedded printing of engineered human tissue and organ equivalents.多尺度嵌入式打印工程化的人类组织和器官等效物。
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2313464121. doi: 10.1073/pnas.2313464121. Epub 2024 Feb 12.

本文引用的文献

1
Bioprinting the Cancer Microenvironment.生物打印癌症微环境
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1710-1721. doi: 10.1021/acsbiomaterials.6b00246. Epub 2016 Jun 17.
2
Rapid Continuous Multimaterial Extrusion Bioprinting.快速连续多材料挤出生物打印
Adv Mater. 2017 Jan;29(3). doi: 10.1002/adma.201604630. Epub 2016 Nov 17.
5
3D Bioprinting for Tissue and Organ Fabrication.用于组织和器官制造的3D生物打印
Ann Biomed Eng. 2017 Jan;45(1):148-163. doi: 10.1007/s10439-016-1612-8. Epub 2016 Apr 28.
6
Three-dimensional bioprinting of thick vascularized tissues.厚壁血管化组织的三维生物打印
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3179-84. doi: 10.1073/pnas.1521342113. Epub 2016 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验