Suppr超能文献

扩大自适应光学扫描激光检眼镜的视野。

Increasing the field of view of adaptive optics scanning laser ophthalmoscopy.

作者信息

Laslandes Marie, Salas Matthias, Hitzenberger Christoph K, Pircher Michael

机构信息

Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Waehringer Guertel 18-20, A-1090 Vienna, Austria.

出版信息

Biomed Opt Express. 2017 Oct 3;8(11):4811-4826. doi: 10.1364/BOE.8.004811. eCollection 2017 Nov 1.

Abstract

An adaptive optics scanning laser ophthalmoscope (AO-SLO) set-up with two deformable mirrors (DM) is presented. It allows high resolution imaging of the retina on a 4°×4° field of view (FoV), considering a 7 mm pupil diameter at the entrance of the eye. Imaging on such a FoV, which is larger compared to classical AO-SLO instruments, is allowed by the use of the two DMs. The first DM is located in a plane that is conjugated to the pupil of the eye and corrects for aberrations that are constant in the FoV. The second DM is conjugated to a plane that is located ∼0.7 mm anterior to the retina. This DM corrects for anisoplanatism effects within the FoV. The control of the DMs is performed by combining the classical AO technique, using a Shack-Hartmann wave-front sensor, and sensorless AO, which uses a criterion characterizing the image quality. The retinas of four healthy volunteers were imaged in-vivo with the developed instrument. In order to assess the performance of the set-up and to demonstrate the benefits of the 2 DM configuration, the acquired images were compared with images taken in conventional conditions, on a smaller FoV and with only one DM. Moreover, an image of a larger patch of the retina was obtained by stitching of 9 images acquired with a 4°×4° FoV, resulting in a total FoV of 10°×10°. Finally, different retinal layers were imaged by shifting the focal plane.

摘要

本文介绍了一种配备两个可变形镜(DM)的自适应光学扫描激光检眼镜(AO-SLO)装置。考虑到眼睛入口处7毫米的瞳孔直径,它能够在4°×4°的视野(FoV)上对视网膜进行高分辨率成像。与传统的AO-SLO仪器相比,该装置使用两个DM实现了更大视野的成像。第一个DM位于与眼睛瞳孔共轭的平面上,用于校正视野中恒定的像差。第二个DM与位于视网膜前方约0.7毫米处的平面共轭,用于校正视野内的非等晕效应。通过结合使用夏克-哈特曼波前传感器的经典AO技术和使用图像质量特征判据的无传感器AO技术来控制DM。使用该研发仪器对四名健康志愿者的视网膜进行了活体成像。为了评估该装置的性能并展示双DM配置的优势,将采集到的图像与在传统条件下、较小视野且仅使用一个DM拍摄的图像进行了比较。此外,通过拼接9张4°×4°视野采集的图像,获得了更大视网膜区域的图像,总视野达到10°×10°。最后,通过移动焦平面成像不同的视网膜层。

相似文献

1
Increasing the field of view of adaptive optics scanning laser ophthalmoscopy.
Biomed Opt Express. 2017 Oct 3;8(11):4811-4826. doi: 10.1364/BOE.8.004811. eCollection 2017 Nov 1.
2
Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.
Opt Express. 2006 Apr 17;14(8):3354-67. doi: 10.1364/oe.14.003354.
3
Influence of wave-front sampling in adaptive optics retinal imaging.
Biomed Opt Express. 2017 Jan 24;8(2):1083-1100. doi: 10.1364/BOE.8.001083. eCollection 2017 Feb 1.
4
Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.
5
Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.
Biomed Opt Express. 2011 Jul 1;2(7):1986-2004. doi: 10.1364/BOE.2.001986. Epub 2011 Jun 17.
6
MEMS segmented-based adaptive optics scanning laser ophthalmoscope.
Biomed Opt Express. 2011 Apr 13;2(5):1204-17. doi: 10.1364/BOE.2.001204.
7
Imaging of retinal vasculature using adaptive optics SLO/OCT.
Biomed Opt Express. 2015 Mar 23;6(4):1407-18. doi: 10.1364/BOE.6.001407. eCollection 2015 Apr 1.
8
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.

引用本文的文献

1
Image Quality in Adaptive Optics Optical Coherence Tomography of Diabetic Patients.
Diagnostics (Basel). 2025 Feb 10;15(4):429. doi: 10.3390/diagnostics15040429.
2
Improvements on speed, stability and field of view in adaptive optics OCT for anterior retinal imaging using a pyramid wavefront sensor.
Biomed Opt Express. 2024 Sep 30;15(10):6098-6116. doi: 10.1364/BOE.533451. eCollection 2024 Oct 1.
3
imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics.
Biomed Opt Express. 2024 Jul 15;15(8):4675-4688. doi: 10.1364/BOE.533249. eCollection 2024 Aug 1.
4
Evolution of adaptive optics retinal imaging [Invited].
Biomed Opt Express. 2023 Feb 28;14(3):1307-1338. doi: 10.1364/BOE.485371. eCollection 2023 Mar 1.
5
Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina.
Biomed Opt Express. 2022 Oct 17;13(11):5860-5878. doi: 10.1364/BOE.462594. eCollection 2022 Nov 1.
6
Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy.
Biomed Opt Express. 2022 May 24;13(6):3576-3592. doi: 10.1364/BOE.457408. eCollection 2022 Jun 1.
7
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
8
Methods and applications of full-field optical coherence tomography: a review.
J Biomed Opt. 2022 May;27(5). doi: 10.1117/1.JBO.27.5.050901.
9
Adaptive optics for high-resolution imaging.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00066-7. Epub 2021 Oct 14.
10
Aberration measurement and correction on a large field of view in fluorescence microscopy.
Biomed Opt Express. 2021 Dec 9;13(1):262-273. doi: 10.1364/BOE.441810. eCollection 2022 Jan 1.

本文引用的文献

1
Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
Biomed Opt Express. 2017 Apr 19;8(5):2536-2562. doi: 10.1364/BOE.8.002536. eCollection 2017 May 1.
2
Influence of wave-front sampling in adaptive optics retinal imaging.
Biomed Opt Express. 2017 Jan 24;8(2):1083-1100. doi: 10.1364/BOE.8.001083. eCollection 2017 Feb 1.
3
A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT51-68. doi: 10.1167/iovs.16-19103.
4
Adaptive optics ophthalmoscopy.
Annu Rev Vis Sci. 2015 Nov;1:19-50. doi: 10.1146/annurev-vision-082114-035357. Epub 2015 Oct 14.
5
High-speed adaptive optics for imaging of the living human eye.
Opt Express. 2015 Sep 7;23(18):23035-52. doi: 10.1364/OE.23.023035.
7
Adaptive optics retinal imaging--clinical opportunities and challenges.
Curr Eye Res. 2013 Jul;38(7):709-21. doi: 10.3109/02713683.2013.784792. Epub 2013 Apr 26.
8
Adaptive optics technology for high-resolution retinal imaging.
Sensors (Basel). 2012 Dec 27;13(1):334-66. doi: 10.3390/s130100334.
9
Lens based adaptive optics scanning laser ophthalmoscope.
Opt Express. 2012 Jul 30;20(16):17297-310. doi: 10.1364/OE.20.017297.
10
Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye.
Biomed Opt Express. 2012 Feb 1;3(2):240-58. doi: 10.1364/BOE.3.000240. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验