Suppr超能文献

[精神病学中的大数据方法:抑郁症研究实例]

[Big data approaches in psychiatry: examples in depression research].

作者信息

Bzdok D, Karrer T M, Habel U, Schneider F

机构信息

Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Deutschland.

Institut für Neurowissenschaften und Medizin: JARA Institute Brain Structure Function Relationship (INM 10), Forschungszentrum Jülich GmbH, Jülich, Deutschland.

出版信息

Nervenarzt. 2018 Aug;89(8):869-874. doi: 10.1007/s00115-017-0456-2.

Abstract

BACKGROUND

The exploration and therapy of depression is aggravated by heterogeneous etiological mechanisms and various comorbidities. With the growing trend towards big data in psychiatry, research and therapy can increasingly target the individual patient. This novel objective requires special methods of analysis.

OBJECTIVE

The possibilities and challenges of the application of big data approaches in depression are examined in closer detail.

MATERIAL AND METHODS

Examples are given to illustrate the possibilities of big data approaches in depression research. Modern machine learning methods are compared to traditional statistical methods in terms of their potential in applications to depression.

RESULTS

Big data approaches are particularly suited to the analysis of detailed observational data, the prediction of single data points or several clinical variables and the identification of endophenotypes. A current challenge lies in the transfer of results into the clinical treatment of patients with depression.

CONCLUSION

Big data approaches enable biological subtypes in depression to be identified and predictions in individual patients to be made. They have enormous potential for prevention, early diagnosis, treatment choice and prognosis of depression as well as for treatment development.

摘要

背景

抑郁症病因机制的异质性和各种合并症加剧了对其的探索和治疗。随着精神病学领域大数据趋势的不断发展,研究和治疗越来越能够针对个体患者。这一全新目标需要特殊的分析方法。

目的

更深入地研究大数据方法在抑郁症应用中的可能性和挑战。

材料与方法

通过实例说明大数据方法在抑郁症研究中的可能性。将现代机器学习方法与传统统计方法在抑郁症应用中的潜力进行比较。

结果

大数据方法特别适用于详细观察数据的分析、单个数据点或多个临床变量的预测以及内表型的识别。当前的一个挑战在于将研究结果转化为抑郁症患者的临床治疗。

结论

大数据方法能够识别抑郁症的生物学亚型并对个体患者进行预测。它们在抑郁症的预防、早期诊断、治疗选择和预后以及治疗开发方面具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验