Bainbridge Hannah, Salem Ahmed, Tijssen Rob H N, Dubec Michael, Wetscherek Andreas, Van Es Corinne, Belderbos Jose, Faivre-Finn Corinne, McDonald Fiona
The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK.
The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK.
Transl Lung Cancer Res. 2017 Dec;6(6):689-707. doi: 10.21037/tlcr.2017.09.02.
Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation. MRI may complement or improve the diagnostic staging accuracy of F-18 fluorodeoxyglucose position emission tomography and computerized tomography imaging, particularly in assessing local tumour invasion and is also effective for identification of nodal and distant metastatic disease. Incorporating anatomical MRI sequences into lung radiotherapy treatment planning is a novel application and may improve target volume and organs at risk delineation reproducibility. Furthermore, functional MRI may facilitate dose painting for heterogeneous target volumes and prediction of normal tissue toxicity to guide adaptive strategies. MRI sequences are rapidly developing and although the issue of intra-thoracic motion has historically hindered the quality of MRI due to the effect of motion, progress is being made in this field. Four-dimensional MRI has the potential to complement or supersede 4D CT and 4D F-18-FDG PET, by providing superior spatial resolution. A number of MR-guided radiotherapy delivery units are now available, combining a radiotherapy delivery machine (linear accelerator or cobalt-60 unit) with MRI at varying magnetic field strengths. This novel hybrid technology is evolving with many technical challenges to overcome. It is anticipated that the clinical benefits of MR-guided radiotherapy will be derived from the ability to adapt treatment on the fly for each fraction and in real-time, using 'beam-on' imaging. The lung tumour site group of the Atlantic MR-Linac consortium is working to generate a challenging MR-guided adaptive workflow for multi-institution treatment intensification trials in this patient group.
放射治疗仍然是无法手术的局部晚期肺癌根治性治疗的基石,通常与铂类化疗联合使用。鉴于总体生存率较低,研究工作仍在继续探索先进放疗技术的整合是否有助于安全地强化治疗,从而有可能改善治疗效果。其中一项进展是在治疗流程中整合磁共振成像(MRI),它能提供具有出色软组织对比度的解剖和功能信息,且不会让患者暴露于辐射中。MRI 可以补充或提高 F-18 氟脱氧葡萄糖正电子发射断层扫描和计算机断层扫描成像的诊断分期准确性,特别是在评估局部肿瘤浸润方面,并且对识别淋巴结和远处转移疾病也有效。将解剖学 MRI 序列纳入肺部放射治疗计划是一种新颖的应用,可能会提高靶区体积和危及器官轮廓描绘的可重复性。此外,功能 MRI 可能有助于对异质性靶区进行剂量描绘,并预测正常组织毒性以指导适应性策略。MRI 序列正在迅速发展,尽管由于运动的影响,胸腔内运动问题历来阻碍了 MRI 的质量,但该领域正在取得进展。四维 MRI 有潜力通过提供更高的空间分辨率来补充或取代四维 CT 和四维 F-18-FDG PET。现在有一些 MR 引导的放射治疗设备可供使用,它们将放射治疗设备(直线加速器或钴-60 装置)与不同磁场强度的 MRI 结合在一起。这种新型混合技术正在不断发展,有许多技术挑战需要克服。预计 MR 引导放射治疗的临床益处将来自于能够在每次分割时实时进行动态适应性治疗,即使用“照射时”成像。大西洋 MR-Linac 联盟的肺部肿瘤部位研究小组正在努力为该患者群体的多机构治疗强化试验制定具有挑战性的 MR 引导适应性工作流程。