Suppr超能文献

用于预防和减轻运动后肌肉酸痛的抗氧化剂。

Antioxidants for preventing and reducing muscle soreness after exercise.

作者信息

Ranchordas Mayur K, Rogerson David, Soltani Hora, Costello Joseph T

机构信息

Department of Sport, Sheffield Hallam University, Collegiate Crescent Campus, A221 Collegiate Hall, Ecclesall Road, Sheffield, South Yorkshire, UK, S10 2BP.

出版信息

Cochrane Database Syst Rev. 2017 Dec 14;12(12):CD009789. doi: 10.1002/14651858.CD009789.pub2.

Abstract

BACKGROUND

Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise.

OBJECTIVES

To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise.

SEARCH METHODS

We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017.

SELECTION CRITERIA

We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement.

DATA COLLECTION AND ANALYSIS

Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE.

MAIN RESULTS

Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress.

AUTHORS' CONCLUSIONS: There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.

摘要

背景

肌肉酸痛通常在剧烈运动、不习惯的运动或涉及离心收缩(即肌肉在张力下伸长)的动作后出现。它在初次运动后的24至72小时达到峰值。许多人在运动前后服用抗氧化剂补充剂或富含抗氧化剂的食物,认为这些可以预防或减轻运动后的肌肉酸痛。

目的

评估抗氧化剂补充剂和富含抗氧化剂的食物对预防和减轻运动后延迟性肌肉酸痛的严重程度和持续时间的效果(益处和危害)。

检索方法

我们检索了Cochrane骨、关节和肌肉创伤组专业注册库、Cochrane对照试验中央注册库、MEDLINE、Embase、SPORTDiscus、试验注册库、文章参考文献列表以及截至2017年2月的会议论文集。

选择标准

我们纳入了随机和半随机对照试验,这些试验研究了各种形式的抗氧化剂补充(包括特定的抗氧化剂补充剂,如片剂、粉剂、浓缩物)以及富含抗氧化剂的食物或饮食对预防或减轻延迟性肌肉酸痛(DOMS)的影响。我们排除了抗氧化剂补充与另一种补充剂联合使用的研究。

数据收集与分析

两位综述作者独立筛选检索结果,评估偏倚风险,并使用预先试点的表格从纳入的试验中提取数据。在适当的情况下,我们通常使用随机效应模型汇总可比试验的结果。在“结果总结”表中呈现的结果包括运动后6小时、24、48、72和96小时时收集的肌肉酸痛、主观恢复情况和不良反应。我们使用GRADE评估证据质量。

主要结果

纳入了50项随机、安慰剂对照试验,其中12项采用交叉设计。1089名参与者中,961名(88.2%)为男性,128名(11.8%)为女性。参与者的年龄范围在16至55岁之间,训练状态从久坐不动到适度训练不等。试验具有异质性,包括抗氧化剂补充的时间(运动前或运动后)、频率、剂量、持续时间和类型,以及先前运动的类型。所有研究使用的抗氧化剂剂量均高于推荐的每日摄入量。大多数试验(47项)由于选择性报告和分配隐藏描述不佳而具有较高的偏倚风险,这可能限制了其结果的可靠性。我们仅测试了一种比较:抗氧化剂补充剂与对照组(安慰剂)。没有研究比较高剂量与低剂量,其中低剂量补充在相关抗氧化剂的正常或推荐水平范围内。汇总的肌肉酸痛结果表明,在所有主要随访时间,即运动后诱导DOMS的运动后,抗氧化剂补充剂有轻微优势:运动后6小时(标准化均数差(SMD)-0.30,95%置信区间(CI)-0.56至-0.04;525名参与者,21项研究;低质量证据);24小时(SMD -0.13,95% CI -0.27至0.00;936名参与者,41项研究;中等质量证据);48小时(SMD -0.24,95% CI -0.42至-0.07;1047名参与者,45项研究;低质量证据);72小时(SMD -0.19,95% CI -0.38至-0.00;657名参与者,28项研究;中等质量证据),96小时时差异不大(SMD -0.05,95% CI -0.29至0.19;436名参与者,17项研究;低质量证据)。当我们重新调整到0至10厘米的量表以量化组间实际差异时,我们发现所有五个随访时间的95% CI均远低于最小重要差异1.4厘米:运动后6小时(MD -0.52,95% CI -0.95至-0.08);24小时(MD -0.17,95% CI -0.42至0.07);48小时(MD -0.41,95% CI -0.69至-0.12);72小时(MD -0.29,95% CI -0.59至0.02);96小时(MD -0.03,95% CI -0.43至0.37)。因此,抗氧化剂补充剂减少肌肉酸痛的效应大小在实际中极不可能等同于有意义或重要的差异。我们根据诱导DOMS的运动类型(机械运动与全身有氧运动)或资金来源进行的亚组分析均未证实亚组差异。排除交叉试验的敏感性分析表明,纳入这些试验对结果没有重要影响。50项纳入试验中没有一项测量主观恢复情况(恢复到之前的活动且无体征或症状)。关于服用抗氧化剂补充剂的潜在不良反应的证据非常少,因为只有9项试验(216名参与者)报告了这一结果。在确实报告了不良反应的研究中,9项试验中有2项发现了不良反应。一项试验的抗氧化剂组中的6名参与者均出现腹泻,其中4名还伴有轻度消化不良;这些是该试验中使用的特定抗氧化剂的已知副作用。第二项试验的26名参与者中有1名出现轻度胃肠道不适。

作者结论

有中等至低质量的证据表明,高剂量抗氧化剂补充在运动后6小时或运动后24、48、72和96小时并不会导致临床上有意义的肌肉酸痛减轻。关于主观恢复情况没有证据,关于服用抗氧化剂补充剂的不良反应只有有限的证据。本综述的研究结果和信息为研究人员及其他利益相关者提供了一个机会,使他们能够共同探讨该领域未来研究的重点和潜在依据。

相似文献

1
Antioxidants for preventing and reducing muscle soreness after exercise.用于预防和减轻运动后肌肉酸痛的抗氧化剂。
Cochrane Database Syst Rev. 2017 Dec 14;12(12):CD009789. doi: 10.1002/14651858.CD009789.pub2.
5
Neuromuscular electrical stimulation (NMES) for patellofemoral pain syndrome.用于髌股疼痛综合征的神经肌肉电刺激(NMES)
Cochrane Database Syst Rev. 2017 Dec 12;12(12):CD011289. doi: 10.1002/14651858.CD011289.pub2.
9
Chlorhexidine mouthrinse as an adjunctive treatment for gingival health.洗必泰漱口水作为牙龈健康的辅助治疗方法。
Cochrane Database Syst Rev. 2017 Mar 31;3(3):CD008676. doi: 10.1002/14651858.CD008676.pub2.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验