Suppr超能文献

基于观察性医疗结果合作组织通用数据模型的临床研究资格标准关系数据库。

An OMOP CDM-Based Relational Database of Clinical Research Eligibility Criteria.

作者信息

Si Yuqi, Weng Chunhua

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

出版信息

Stud Health Technol Inform. 2017;245:950-954.

Abstract

Eligibility criteria are important for clinical research protocols or clinical practice guidelines for determining who qualify for studies and to whom clinical evidence is applicable, but the free-text format is not amenable for computational processing. In this paper, we described a practical method for transforming free-text clinical research eligibility criteria of Alzheimer's clinical trials into a structured relational database compliant with standards for medical terminologies and clinical data models. We utilized a hybrid natural language processing system and a concept normalization tool to extract medical terms in clinical research eligibility criteria and represent them using the OMOP Common Data Model (CDM) v5. We created a database schema design to store syntactic relations to facilitate efficient cohort queries. We further discussed the potential of applying this method to trials on other diseases and the promise of using it to accelerate clinical research with electronic health records.

摘要

纳入标准对于临床研究方案或临床实践指南很重要,用于确定谁有资格参与研究以及临床证据适用于谁,但自由文本格式不便于进行计算处理。在本文中,我们描述了一种实用方法,可将阿尔茨海默病临床试验的自由文本临床研究纳入标准转换为符合医学术语和临床数据模型标准的结构化关系数据库。我们利用混合自然语言处理系统和概念规范化工具来提取临床研究纳入标准中的医学术语,并使用OMOP通用数据模型(CDM)v5来表示它们。我们创建了一个数据库模式设计来存储句法关系,以促进高效的队列查询。我们进一步讨论了将此方法应用于其他疾病试验的潜力,以及使用它来加速电子健康记录临床研究的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b5d/5893219/7ad63b3eb745/nihms955981f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验