Department of Biomedical Informatics, Columbia University, New York, New York, USA.
Department of Medicine, Columbia University, New York, New York, USA.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1333-1343. doi: 10.1093/jamia/ocz121.
Information overload remains a challenge for patients seeking clinical trials. We present a novel system (DQueST) that reduces information overload for trial seekers using dynamic questionnaires.
DQueST first performs information extraction and criteria library curation. DQueST transforms criteria narratives in the ClinicalTrials.gov repository into a structured format, normalizes clinical entities using standard concepts, clusters related criteria, and stores the resulting curated library. DQueST then implements a real-time dynamic question generation algorithm. During user interaction, the initial search is similar to a standard search engine, and then DQueST performs real-time dynamic question generation to select criteria from the library 1 at a time by maximizing its relevance score that reflects its ability to rule out ineligible trials. DQueST dynamically updates the remaining trial set by removing ineligible trials based on user responses to corresponding questions. The process iterates until users decide to stop and begin manually reviewing the remaining trials.
In simulation experiments initiated by 10 diseases, DQueST reduced information overload by filtering out 60%-80% of initial trials after 50 questions. Reviewing the generated questions against previous answers, on average, 79.7% of the questions were relevant to the queried conditions. By examining the eligibility of random samples of trials ruled out by DQueST, we estimate the accuracy of the filtering procedure is 63.7%. In a study using 5 mock patient profiles, DQueST on average retrieved trials with a 1.465 times higher density of eligible trials than an existing search engine. In a patient-centered usability evaluation, patients found DQueST useful, easy to use, and returning relevant results.
DQueST contributes a novel framework for transforming free-text eligibility criteria to questions and filtering out clinical trials based on user answers to questions dynamically. It promises to augment keyword-based methods to improve clinical trial search.
信息过载仍然是寻求临床试验的患者面临的挑战。我们提出了一种新系统(DQueST),通过使用动态问卷为试验寻求者减少信息过载。
DQueST 首先执行信息提取和标准库策展。DQueST 将 ClinicalTrials.gov 存储库中的标准叙述转换为结构化格式,使用标准概念对临床实体进行标准化,对相关标准进行聚类,并存储由此产生的策展库。然后,DQueST 实现了实时动态问题生成算法。在用户交互过程中,初始搜索类似于标准搜索引擎,然后 DQueST 通过实时动态问题生成从库中一次选择一个标准,最大程度地提高其相关分数,以反映其排除不合格试验的能力。DQueST 根据用户对相应问题的响应,动态更新剩余的试验集,以排除不合格的试验。该过程迭代,直到用户决定停止并开始手动审查剩余的试验。
在由 10 种疾病启动的模拟实验中,DQueST 在 50 个问题后过滤掉了 60%-80%的初始试验,从而减少了信息过载。针对先前的答案审查生成的问题,平均有 79.7%的问题与查询条件相关。通过检查 DQueST 排除的随机样本试验的资格,我们估计过滤过程的准确率为 63.7%。在一项使用 5 个模拟患者档案的研究中,DQueST 平均检索到的试验中合格试验的密度比现有搜索引擎高 1.465 倍。在以患者为中心的可用性评估中,患者认为 DQueST 有用、易于使用并返回相关结果。
DQueST 为将自由文本资格标准转换为问题并根据用户对问题的回答动态过滤临床试验提供了一种新框架。它有望增强基于关键字的方法,以改善临床试验搜索。