Suppr超能文献

使用离散小波变换(DWT)和概率神经网络进行特征提取的脑肿瘤磁共振成像(MRI)图像识别与分类

Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network.

作者信息

Varuna Shree N, Kumar T N R

机构信息

Department of CS&E, MSRIT, Bangalore, India.

出版信息

Brain Inform. 2018 Mar;5(1):23-30. doi: 10.1007/s40708-017-0075-5. Epub 2018 Jan 8.

Abstract

The identification, segmentation and detection of infecting area in brain tumor MRI images are a tedious and time-consuming task. The different anatomy structure of human body can be visualized by an image processing concepts. It is very difficult to have vision about the abnormal structures of human brain using simple imaging techniques. Magnetic resonance imaging technique distinguishes and clarifies the neural architecture of human brain. MRI technique contains many imaging modalities that scans and capture the internal structure of human brain. In this study, we have concentrated on noise removal technique, extraction of gray-level co-occurrence matrix (GLCM) features, DWT-based brain tumor region growing segmentation to reduce the complexity and improve the performance. This was followed by morphological filtering which removes the noise that can be formed after segmentation. The probabilistic neural network classifier was used to train and test the performance accuracy in the detection of tumor location in brain MRI images. The experimental results achieved nearly 100% accuracy in identifying normal and abnormal tissues from brain MR images demonstrating the effectiveness of the proposed technique.

摘要

脑肿瘤MRI图像中感染区域的识别、分割和检测是一项繁琐且耗时的任务。人体不同的解剖结构可以通过图像处理概念可视化。使用简单的成像技术很难看清人脑的异常结构。磁共振成像技术能够区分并清晰显示人脑的神经结构。MRI技术包含多种成像模式,可扫描并捕捉人脑的内部结构。在本研究中,我们专注于噪声去除技术、灰度共生矩阵(GLCM)特征提取、基于离散小波变换(DWT)的脑肿瘤区域生长分割,以降低复杂度并提高性能。随后进行形态学滤波,去除分割后可能形成的噪声。使用概率神经网络分类器训练并测试脑MRI图像中肿瘤位置检测的性能准确性。实验结果在从脑MR图像中识别正常和异常组织方面达到了近100%的准确率,证明了所提技术的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4871/5893499/6d0c24d0eb14/40708_2017_75_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验