Decker Franziska, Oriola David, Dalton Benjamin, Brugués Jan
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.
Elife. 2018 Jan 11;7:e31149. doi: 10.7554/eLife.31149.
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.
大小和生长的调控是生物学中的一个基本问题。一个突出的例子是有丝分裂纺锤体的形成,人们认为染色体周围的蛋白质浓度梯度通过控制微管成核来调节纺锤体的生长。先前的证据表明微管在整个纺锤体结构中形成核。然而,微管成核及其空间调控的潜在机制仍不清楚。在这里,我们开发了一种基于激光消融的检测方法,以直接探测卵提取物中的微管成核事件。将这种方法与理论和定量显微镜相结合,我们表明纺锤体的大小由微管的自催化生长控制,微管刺激的微管成核驱动这种生长。这种成核系统的自催化活性在空间上受活性微管成核剂的有限量调节,活性微管成核剂的量随着与染色体距离的增加而减少。即使资源不受限制,这种机制也为纺锤体大小提供了一个上限。